Abstract:Relation extraction (RE) is a fundamental task in natural language processing, aiming to identify relations between target entities in text. While many RE methods are designed for a single sentence or document, cross-document RE has emerged to address relations across multiple long documents. Given the nature of long documents in cross-document RE, extracting document embeddings is challenging due to the length constraints of pre-trained language models. Therefore, we propose REward-based Input Construction (REIC), the first learning-based sentence selector for cross-document RE. REIC extracts sentences based on relational evidence, enabling the RE module to effectively infer relations. Since supervision of evidence sentences is generally unavailable, we train REIC using reinforcement learning with RE prediction scores as rewards. Experimental results demonstrate the superiority of our method over heuristic methods for different RE structures and backbones in cross-document RE. Our code is publicly available at https://github.com/aailabkaist/REIC.
Abstract:Recent advances in powerful pre-trained diffusion models encourage the development of methods to improve the sampling performance under well-trained diffusion models. This paper introduces Diffusion Rejection Sampling (DiffRS), which uses a rejection sampling scheme that aligns the sampling transition kernels with the true ones at each timestep. The proposed method can be viewed as a mechanism that evaluates the quality of samples at each intermediate timestep and refines them with varying effort depending on the sample. Theoretical analysis shows that DiffRS can achieve a tighter bound on sampling error compared to pre-trained models. Empirical results demonstrate the state-of-the-art performance of DiffRS on the benchmark datasets and the effectiveness of DiffRS for fast diffusion samplers and large-scale text-to-image diffusion models. Our code is available at https://github.com/aailabkaist/DiffRS.
Abstract:Diffusion-based representation learning has achieved substantial attention due to its promising capabilities in latent representation and sample generation. Recent studies have employed an auxiliary encoder to identify a corresponding representation from a sample and to adjust the dimensionality of a latent variable z. Meanwhile, this auxiliary structure invokes information split problem because the diffusion and the auxiliary encoder would divide the information from the sample into two representations for each model. Particularly, the information modeled by the diffusion becomes over-regularized because of the static prior distribution on xT. To address this problem, we introduce Diffusion Bridge AuteEncoders (DBAE), which enable z-dependent endpoint xT inference through a feed-forward architecture. This structure creates an information bottleneck at z, so xT becomes dependent on z in its generation. This results in two consequences: 1) z holds the full information of samples, and 2) xT becomes a learnable distribution, not static any further. We propose an objective function for DBAE to enable both reconstruction and generative modeling, with their theoretical justification. Empirical evidence supports the effectiveness of the intended design in DBAE, which notably enhances downstream inference quality, reconstruction, and disentanglement. Additionally, DBAE generates high-fidelity samples in the unconditional generation.
Abstract:The objective of domain generalization (DG) is to enhance the transferability of the model learned from a source domain to unobserved domains. To prevent overfitting to a specific domain, Sharpness-Aware Minimization (SAM) reduces source domain's loss sharpness. Although SAM variants have delivered significant improvements in DG, we highlight that there's still potential for improvement in generalizing to unknown domains through the exploration on data space. This paper introduces an objective rooted in both parameter and data perturbed regions for domain generalization, coined Unknown Domain Inconsistency Minimization (UDIM). UDIM reduces the loss landscape inconsistency between source domain and unknown domains. As unknown domains are inaccessible, these domains are empirically crafted by perturbing instances from the source domain dataset. In particular, by aligning the loss landscape acquired in the source domain to the loss landscape of perturbed domains, we expect to achieve generalization grounded on these flat minima for the unknown domains. Theoretically, we validate that merging SAM optimization with the UDIM objective establishes an upper bound for the true objective of the DG task. In an empirical aspect, UDIM consistently outperforms SAM variants across multiple DG benchmark datasets. Notably, UDIM shows statistically significant improvements in scenarios with more restrictive domain information, underscoring UDIM's generalization capability in unseen domains. Our code is available at \url{https://github.com/SJShin-AI/UDIM}.
Abstract:For learning with noisy labels, the transition matrix, which explicitly models the relation between noisy label distribution and clean label distribution, has been utilized to achieve the statistical consistency of either the classifier or the risk. Previous researches have focused more on how to estimate this transition matrix well, rather than how to utilize it. We propose good utilization of the transition matrix is crucial and suggest a new utilization method based on resampling, coined RENT. Specifically, we first demonstrate current utilizations can have potential limitations for implementation. As an extension to Reweighting, we suggest the Dirichlet distribution-based per-sample Weight Sampling (DWS) framework, and compare reweighting and resampling under DWS framework. With the analyses from DWS, we propose RENT, a REsampling method with Noise Transition matrix. Empirically, RENT consistently outperforms existing transition matrix utilization methods, which includes reweighting, on various benchmark datasets. Our code is available at \url{https://github.com/BaeHeeSun/RENT}.
Abstract:With significant advancements in diffusion models, addressing the potential risks of dataset bias becomes increasingly important. Since generated outputs directly suffer from dataset bias, mitigating latent bias becomes a key factor in improving sample quality and proportion. This paper proposes time-dependent importance reweighting to mitigate the bias for the diffusion models. We demonstrate that the time-dependent density ratio becomes more precise than previous approaches, thereby minimizing error propagation in generative learning. While directly applying it to score-matching is intractable, we discover that using the time-dependent density ratio both for reweighting and score correction can lead to a tractable form of the objective function to regenerate the unbiased data density. Furthermore, we theoretically establish a connection with traditional score-matching, and we demonstrate its convergence to an unbiased distribution. The experimental evidence supports the usefulness of the proposed method, which outperforms baselines including time-independent importance reweighting on CIFAR-10, CIFAR-100, FFHQ, and CelebA with various bias settings. Our code is available at https://github.com/alsdudrla10/TIW-DSM.
Abstract:Conditional diffusion models have shown remarkable performance in various generative tasks, but training them requires large-scale datasets that often contain noise in conditional inputs, a.k.a. noisy labels. This noise leads to condition mismatch and quality degradation of generated data. This paper proposes Transition-aware weighted Denoising Score Matching (TDSM) for training conditional diffusion models with noisy labels, which is the first study in the line of diffusion models. The TDSM objective contains a weighted sum of score networks, incorporating instance-wise and time-dependent label transition probabilities. We introduce a transition-aware weight estimator, which leverages a time-dependent noisy-label classifier distinctively customized to the diffusion process. Through experiments across various datasets and noisy label settings, TDSM improves the quality of generated samples aligned with given conditions. Furthermore, our method improves generation performance even on prevalent benchmark datasets, which implies the potential noisy labels and their risk of generative model learning. Finally, we show the improved performance of TDSM on top of conventional noisy label corrections, which empirically proving its contribution as a part of label-noise robust generative models. Our code is available at: https://github.com/byeonghu-na/tdsm.
Abstract:Recent Vision-Language Pretrained (VLP) models have become the backbone for many downstream tasks, but they are utilized as frozen model without learning. Prompt learning is a method to improve the pre-trained VLP model by adding a learnable context vector to the inputs of the text encoder. In a few-shot learning scenario of the downstream task, MLE training can lead the context vector to over-fit dominant image features in the training data. This overfitting can potentially harm the generalization ability, especially in the presence of a distribution shift between the training and test dataset. This paper presents a Bayesian-based framework of prompt learning, which could alleviate the overfitting issues on few-shot learning application and increase the adaptability of prompts on unseen instances. Specifically, modeling data-dependent prior enhances the adaptability of text features for both seen and unseen image features without the trade-off of performance between them. Based on the Bayesian framework, we utilize the Wasserstein Gradient Flow in the estimation of our target posterior distribution, which enables our prompt to be flexible in capturing the complex modes of image features. We demonstrate the effectiveness of our method on benchmark datasets for several experiments by showing statistically significant improvements on performance compared to existing methods. The code is available at https://github.com/youngjae-cho/APP.
Abstract:This paper presents FreD, a novel parameterization method for dataset distillation, which utilizes the frequency domain to distill a small-sized synthetic dataset from a large-sized original dataset. Unlike conventional approaches that focus on the spatial domain, FreD employs frequency-based transforms to optimize the frequency representations of each data instance. By leveraging the concentration of spatial domain information on specific frequency components, FreD intelligently selects a subset of frequency dimensions for optimization, leading to a significant reduction in the required budget for synthesizing an instance. Through the selection of frequency dimensions based on the explained variance, FreD demonstrates both theoretical and empirical evidence of its ability to operate efficiently within a limited budget, while better preserving the information of the original dataset compared to conventional parameterization methods. Furthermore, based on the orthogonal compatibility of FreD with existing methods, we confirm that FreD consistently improves the performances of existing distillation methods over the evaluation scenarios with different benchmark datasets. We release the code at https://github.com/sdh0818/FreD.
Abstract:Training neural networks on a large dataset requires substantial computational costs. Dataset reduction selects or synthesizes data instances based on the large dataset, while minimizing the degradation in generalization performance from the full dataset. Existing methods utilize the neural network during the dataset reduction procedure, so the model parameter becomes important factor in preserving the performance after reduction. By depending upon the importance of parameters, this paper introduces a new reduction objective, coined LCMat, which Matches the Loss Curvatures of the original dataset and reduced dataset over the model parameter space, more than the parameter point. This new objective induces a better adaptation of the reduced dataset on the perturbed parameter region than the exact point matching. Particularly, we identify the worst case of the loss curvature gap from the local parameter region, and we derive the implementable upper bound of such worst-case with theoretical analyses. Our experiments on both coreset selection and condensation benchmarks illustrate that LCMat shows better generalization performances than existing baselines.