Abstract:Knowledge distillation (KD) involves transferring knowledge from a pre-trained heavy teacher model to a lighter student model, thereby reducing the inference cost while maintaining comparable effectiveness. Prior KD techniques typically assume homogeneity between the teacher and student models. However, as technology advances, a wide variety of architectures have emerged, ranging from initial Convolutional Neural Networks (CNNs) to Vision Transformers (ViTs), and Multi-Level Perceptrons (MLPs). Consequently, developing a universal KD framework compatible with any architecture has become an important research topic. In this paper, we introduce a feature-based one-for-all (FOFA) KD framework to enable feature distillation across diverse architecture. Our framework comprises two key components. First, we design prompt tuning blocks that incorporate student feedback, allowing teacher features to adapt to the student model's learning process. Second, we propose region-aware attention to mitigate the view mismatch problem between heterogeneous architecture. By leveraging these two modules, effective distillation of intermediate features can be achieved across heterogeneous architectures. Extensive experiments on CIFAR, ImageNet, and COCO demonstrate the superiority of the proposed method.
Abstract:Sequential recommendation (SR) systems predict user preferences by analyzing time-ordered interaction sequences. A common challenge for SR is data sparsity, as users typically interact with only a limited number of items. While contrastive learning has been employed in previous approaches to address the challenges, these methods often adopt binary labels, missing finer patterns and overlooking detailed information in subsequent behaviors of users. Additionally, they rely on random sampling to select negatives in contrastive learning, which may not yield sufficiently hard negatives during later training stages. In this paper, we propose Future data utilization with Enduring Negatives for contrastive learning in sequential Recommendation (FENRec). Our approach aims to leverage future data with time-dependent soft labels and generate enduring hard negatives from existing data, thereby enhancing the effectiveness in tackling data sparsity. Experiment results demonstrate our state-of-the-art performance across four benchmark datasets, with an average improvement of 6.16\% across all metrics.
Abstract:In spite of recent advancements in text-to-image generation, limitations persist in handling complex and imaginative prompts due to the restricted diversity and complexity of training data. This work explores how diffusion models can generate images from prompts requiring artistic creativity or specialized knowledge. We introduce the Realistic-Fantasy Benchmark (RFBench), a novel evaluation framework blending realistic and fantastical scenarios. To address these challenges, we propose the Realistic-Fantasy Network (RFNet), a training-free approach integrating diffusion models with LLMs. Extensive human evaluations and GPT-based compositional assessments demonstrate our approach's superiority over state-of-the-art methods. Our code and dataset is available at https://leo81005.github.io/Reality-and-Fantasy/.
Abstract:Visual Instruction Tuning represents a novel learning paradigm involving the fine-tuning of pre-trained language models using task-specific instructions. This paradigm shows promising zero-shot results in various natural language processing tasks but is still unexplored in vision emotion understanding. In this work, we focus on enhancing the model's proficiency in understanding and adhering to instructions related to emotional contexts. Initially, we identify key visual clues critical to visual emotion recognition. Subsequently, we introduce a novel GPT-assisted pipeline for generating emotion visual instruction data, effectively addressing the scarcity of annotated instruction data in this domain. Expanding on the groundwork established by InstructBLIP, our proposed EmoVIT architecture incorporates emotion-specific instruction data, leveraging the powerful capabilities of Large Language Models to enhance performance. Through extensive experiments, our model showcases its proficiency in emotion classification, adeptness in affective reasoning, and competence in comprehending humor. The comparative analysis provides a robust benchmark for Emotion Visual Instruction Tuning in the era of LLMs, providing valuable insights and opening avenues for future exploration in this domain. Our code is available at \url{https://github.com/aimmemotion/EmoVIT}.
Abstract:Over the past decade, the dominance of deep learning has prevailed across various domains of artificial intelligence, including natural language processing, computer vision, and biomedical signal processing. While there have been remarkable improvements in model accuracy, deploying these models on lightweight devices, such as mobile phones and microcontrollers, is constrained by limited resources. In this survey, we provide comprehensive design guidance tailored for these devices, detailing the meticulous design of lightweight models, compression methods, and hardware acceleration strategies. The principal goal of this work is to explore methods and concepts for getting around hardware constraints without compromising the model's accuracy. Additionally, we explore two notable paths for lightweight deep learning in the future: deployment techniques for TinyML and Large Language Models. Although these paths undoubtedly have potential, they also present significant challenges, encouraging research into unexplored areas.
Abstract:Group affect refers to the subjective emotion that is evoked by an external stimulus in a group, which is an important factor that shapes group behavior and outcomes. Recognizing group affect involves identifying important individuals and salient objects among a crowd that can evoke emotions. Most of the existing methods are proposed to detect faces and objects using pre-trained detectors and summarize the results into group emotions by specific rules. However, such affective region selection mechanisms are heuristic and susceptible to imperfect faces and objects from the pre-trained detectors. Moreover, faces and objects on group-level images are often contextually relevant. There is still an open question about how important faces and objects can be interacted with. In this work, we incorporate the psychological concept called Most Important Person (MIP). It represents the most noteworthy face in the crowd and has an affective semantic meaning. We propose the Dual-branch Cross-Patch Attention Transformer (DCAT) which uses global image and MIP together as inputs. Specifically, we first learn the informative facial regions produced by the MIP and the global context separately. Then, the Cross-Patch Attention module is proposed to fuse the features of MIP and global context together to complement each other. With parameters less than 10x, the proposed DCAT outperforms state-of-the-art methods on two datasets of group valence prediction, GAF 3.0 and GroupEmoW datasets. Moreover, our proposed model can be transferred to another group affect task, group cohesion, and shows comparable results.