Abstract:Accurate barcode detection and decoding in Identity documents is crucial for applications like security, healthcare, and education, where reliable data extraction and verification are essential. However, building robust detection models is challenging due to the lack of diverse, realistic datasets an issue often tied to privacy concerns and the wide variety of document formats. Traditional tools like Faker rely on predefined templates, making them less effective for capturing the complexity of real-world identity documents. In this paper, we introduce a new approach to synthetic data generation that uses LLMs to create contextually rich and realistic data without relying on predefined field. Using the vast knowledge LLMs have about different documents and content, our method creates data that reflects the variety found in real identity documents. This data is then encoded into barcode and overlayed on templates for documents such as Driver's licenses, Insurance cards, Student IDs. Our approach simplifies the process of dataset creation, eliminating the need for extensive domain knowledge or predefined fields. Compared to traditional methods like Faker, data generated by LLM demonstrates greater diversity and contextual relevance, leading to improved performance in barcode detection models. This scalable, privacy-first solution is a big step forward in advancing machine learning for automated document processing and identity verification.
Abstract:Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs) by introducing continuous dynamics. They typically draw inspiration from diffusion-based methods to introduce a novel propagation scheme, which is analyzed using ordinary differential equations (ODE). However, the implementation of CGNNs requires significant computational power, making them challenging to deploy on battery-powered devices. Inspired by recent spiking neural networks (SNNs), which emulate a biological inference process and provide an energy-efficient neural architecture, we incorporate the SNNs with CGNNs in a unified framework, named Continuous Spiking Graph Neural Networks (COS-GNN). We employ SNNs for graph node representation at each time step, which are further integrated into the ODE process along with time. To enhance information preservation and mitigate information loss in SNNs, we introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation. Moreover, we provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes. Experimental results on graph-based learning tasks demonstrate the effectiveness of the proposed COS-GNN over competitive baselines.