Abstract:Recent advancements in Vision-Language Models (VLMs) have enabled significant progress in complex video understanding tasks. However, their robustness to real-world manipulations remains underexplored, limiting their reliability in critical applications. To address this gap, we introduce MVTamperBench, a comprehensive benchmark designed to evaluate VLM's resilience to video tampering effects, including rotation, dropping, masking, substitution, and repetition. By systematically assessing state-of-the-art models, MVTamperBench reveals substantial variability in robustness, with models like InternVL2-8B achieving high performance, while others, such as Llama-VILA1.5-8B, exhibit severe vulnerabilities. To foster broader adoption and reproducibility, MVTamperBench is integrated into VLMEvalKit, a modular evaluation toolkit, enabling streamlined testing and facilitating advancements in model robustness. Our benchmark represents a critical step towards developing tamper-resilient VLMs, ensuring their dependability in real-world scenarios. Project Page: https://amitbcp.github.io/MVTamperBench/
Abstract:Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems by integrating and analyzing diverse types of data, including text, images, audio, and video. Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning. Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview. Large-scale multimodal datasets are essential because they allow for thorough testing and training of these models. With an emphasis on their contributions to the discipline, the study examines a variety of datasets, including those for training, domain-specific tasks, and real-world applications. It also emphasizes how crucial benchmark datasets are for assessing models' performance in a range of scenarios, scalability, and applicability. Since multimodal learning is always changing, overcoming these obstacles will help AI research and applications reach new heights.
Abstract:The development of robust Document AI models has been constrained by limited access to high-quality, labeled datasets, primarily due to data privacy concerns, scarcity, and the high cost of manual annotation. Traditional methods of synthetic data generation, such as text and image augmentation, have proven effective for increasing data diversity but often fail to capture the complex layout structures present in real world documents. This paper proposes a novel approach to synthetic document layout generation using Graph Neural Networks (GNNs). By representing document elements (e.g., text blocks, images, tables) as nodes in a graph and their spatial relationships as edges, GNNs are trained to generate realistic and diverse document layouts. This method leverages graph-based learning to ensure structural coherence and semantic consistency, addressing the limitations of traditional augmentation techniques. The proposed framework is evaluated on tasks such as document classification, named entity recognition (NER), and information extraction, demonstrating significant performance improvements. Furthermore, we address the computational challenges of GNN based synthetic data generation and propose solutions to mitigate domain adaptation issues between synthetic and real-world datasets. Our experimental results show that graph-augmented document layouts outperform existing augmentation techniques, offering a scalable and flexible solution for training Document AI models.