Abstract:Diffusion models have demonstrated exceptional efficacy in various generative applications. While existing models focus on minimizing a weighted sum of denoising score matching losses for data distribution modeling, their training primarily emphasizes instance-level optimization, overlooking valuable structural information within each mini-batch, indicative of pair-wise relationships among samples. To address this limitation, we introduce Structure-guided Adversarial training of Diffusion Models (SADM). In this pioneering approach, we compel the model to learn manifold structures between samples in each training batch. To ensure the model captures authentic manifold structures in the data distribution, we advocate adversarial training of the diffusion generator against a novel structure discriminator in a minimax game, distinguishing real manifold structures from the generated ones. SADM substantially improves existing diffusion transformers (DiT) and outperforms existing methods in image generation and cross-domain fine-tuning tasks across 12 datasets, establishing a new state-of-the-art FID of 1.58 and 2.11 on ImageNet for class-conditional image generation at resolutions of 256x256 and 512x512, respectively.
Abstract:In recent years, with the continuous development of the marine industry, underwater image enhancement has attracted plenty of attention. Unfortunately, the propagation of light in water will be absorbed by water bodies and scattered by suspended particles, resulting in color deviation and low contrast. To solve these two problems, we propose an Adaptive Transmission and Dynamic Color guided network (named ATDCnet) for underwater image enhancement. In particular, to exploit the knowledge of physics, we design an Adaptive Transmission-directed Module (ATM) to better guide the network. To deal with the color deviation problem, we design a Dynamic Color-guided Module (DCM) to post-process the enhanced image color. Further, we design an Encoder-Decoder-based Compensation (EDC) structure with attention and a multi-stage feature fusion mechanism to perform color restoration and contrast enhancement simultaneously. Extensive experiments demonstrate the state-of-the-art performance of the ATDCnet on multiple benchmark datasets.
Abstract:As mobile cameras with compact optics are unable to produce a strong bokeh effect, lots of interest is now devoted to deep learning-based solutions for this task. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based bokeh effect rendering approach that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale EBB! bokeh dataset consisting of 5K shallow / wide depth-of-field image pairs captured using the Canon 7D DSLR camera. The runtime of the resulting models was evaluated on the Kirin 9000's Mali GPU that provides excellent acceleration results for the majority of common deep learning ops. A detailed description of all models developed in this challenge is provided in this paper.