Abstract:Precipitation from tropical cyclones (TCs) can cause disasters such as flooding, mudslides, and landslides. Predicting such precipitation in advance is crucial, giving people time to prepare and defend against these precipitation-induced disasters. Developing deep learning (DL) rainfall prediction methods offers a new way to predict potential disasters. However, one problem is that most existing methods suffer from cumulative errors and lack physical consistency. Second, these methods overlook the importance of meteorological factors in TC rainfall and their integration with the numerical weather prediction (NWP) model. Therefore, we propose Tropical Cyclone Precipitation Diffusion (TCP-Diffusion), a multi-modal model for global tropical cyclone precipitation forecasting. It forecasts TC rainfall around the TC center for the next 12 hours at 3 hourly resolution based on past rainfall observations and multi-modal environmental variables. Adjacent residual prediction (ARP) changes the training target from the absolute rainfall value to the rainfall trend and gives our model the ability of rainfall change awareness, reducing cumulative errors and ensuring physical consistency. Considering the influence of TC-related meteorological factors and the useful information from NWP model forecasts, we propose a multi-model framework with specialized encoders to extract richer information from environmental variables and results provided by NWP models. The results of extensive experiments show that our method outperforms other DL methods and the NWP method from the European Centre for Medium-Range Weather Forecasts (ECMWF).
Abstract:Remote sensing image-text retrieval constitutes a foundational aspect of remote sensing interpretation tasks, facilitating the alignment of vision and language representations. This paper introduces a prior instruction representation (PIR) learning paradigm that draws on prior knowledge to instruct adaptive learning of vision and text representations. Based on PIR, a domain-adapted remote sensing image-text retrieval framework PIR-ITR is designed to address semantic noise issues in vision-language understanding tasks. However, with massive additional data for pre-training the vision-language foundation model, remote sensing image-text retrieval is further developed into an open-domain retrieval task. Continuing with the above, we propose PIR-CLIP, a domain-specific CLIP-based framework for remote sensing image-text retrieval, to address semantic noise in remote sensing vision-language representations and further improve open-domain retrieval performance. In vision representation, Vision Instruction Representation (VIR) based on Spatial-PAE utilizes the prior-guided knowledge of the remote sensing scene recognition by building a belief matrix to select key features for reducing the impact of semantic noise. In text representation, Language Cycle Attention (LCA) based on Temporal-PAE uses the previous time step to cyclically activate the current time step to enhance text representation capability. A cluster-wise Affiliation Loss (AL) is proposed to constrain the inter-classes and to reduce the semantic confusion zones in the common subspace. Comprehensive experiments demonstrate that PIR could enhance vision and text representations and outperform the state-of-the-art methods of closed-domain and open-domain retrieval on two benchmark datasets, RSICD and RSITMD.
Abstract:In recent years, deep learning networks have made remarkable strides in the domain of multi-exposure image fusion. Nonetheless, prevailing approaches often involve directly feeding over-exposed and under-exposed images into the network, which leads to the under-utilization of inherent information present in the source images. Additionally, unsupervised techniques predominantly employ rudimentary weighted summation for color channel processing, culminating in an overall desaturated final image tone. To partially mitigate these issues, this study proposes a gamma correction module specifically designed to fully leverage latent information embedded within source images. Furthermore, a modified transformer block, embracing with self-attention mechanisms, is introduced to optimize the fusion process. Ultimately, a novel color enhancement algorithm is presented to augment image saturation while preserving intricate details. The source code is available at https://github.com/ZhiyingDu/BHFMEF.
Abstract:Image-text retrieval has developed rapidly in recent years. However, it is still a challenge in remote sensing due to visual-semantic imbalance, which leads to incorrect matching of non-semantic visual and textual features. To solve this problem, we propose a novel Direction-Oriented Visual-semantic Embedding Model (DOVE) to mine the relationship between vision and language. Concretely, a Regional-Oriented Attention Module (ROAM) adaptively adjusts the distance between the final visual and textual embeddings in the latent semantic space, oriented by regional visual features. Meanwhile, a lightweight Digging Text Genome Assistant (DTGA) is designed to expand the range of tractable textual representation and enhance global word-level semantic connections using less attention operations. Ultimately, we exploit a global visual-semantic constraint to reduce single visual dependency and serve as an external constraint for the final visual and textual representations. The effectiveness and superiority of our method are verified by extensive experiments including parameter evaluation, quantitative comparison, ablation studies and visual analysis, on two benchmark datasets, RSICD and RSITMD.
Abstract:As a common natural weather condition, rain can obscure video frames and thus affect the performance of the visual system, so video derain receives a lot of attention. In natural environments, rain has a wide variety of streak types, which increases the difficulty of the rain removal task. In this paper, we propose a Rain Review-based General video derain Network via knowledge distillation (named RRGNet) that handles different rain streak types with one pre-training weight. Specifically, we design a frame grouping-based encoder-decoder network that makes full use of the temporal information of the video. Further, we use the old task model to guide the current model in learning new rain streak types while avoiding forgetting. To consolidate the network's ability to derain, we design a rain review module to play back data from old tasks for the current model. The experimental results show that our developed general method achieves the best results in terms of running speed and derain effect.
Abstract:Underwater images often suffer from color distortion and low contrast resulting in various image types, due to the scattering and absorption of light by water. While it is difficult to obtain high-quality paired training samples with a generalized model. To tackle these challenges, we design a Generalized Underwater image enhancement method via a Physical-knowledge-guided Dynamic Model (short for GUPDM), consisting of three parts: Atmosphere-based Dynamic Structure (ADS), Transmission-guided Dynamic Structure (TDS), and Prior-based Multi-scale Structure (PMS). In particular, to cover complex underwater scenes, this study changes the global atmosphere light and the transmission to simulate various underwater image types (e.g., the underwater image color ranging from yellow to blue) through the formation model. We then design ADS and TDS that use dynamic convolutions to adaptively extract prior information from underwater images and generate parameters for PMS. These two modules enable the network to select appropriate parameters for various water types adaptively. Besides, the multi-scale feature extraction module in PMS uses convolution blocks with different kernel sizes and obtains weights for each feature map via channel attention block and fuses them to boost the receptive field of the network. The source code will be available at \href{https://github.com/shiningZZ/GUPDM}{https://github.com/shiningZZ/GUPDM}.
Abstract:In recent years, with the continuous development of the marine industry, underwater image enhancement has attracted plenty of attention. Unfortunately, the propagation of light in water will be absorbed by water bodies and scattered by suspended particles, resulting in color deviation and low contrast. To solve these two problems, we propose an Adaptive Transmission and Dynamic Color guided network (named ATDCnet) for underwater image enhancement. In particular, to exploit the knowledge of physics, we design an Adaptive Transmission-directed Module (ATM) to better guide the network. To deal with the color deviation problem, we design a Dynamic Color-guided Module (DCM) to post-process the enhanced image color. Further, we design an Encoder-Decoder-based Compensation (EDC) structure with attention and a multi-stage feature fusion mechanism to perform color restoration and contrast enhancement simultaneously. Extensive experiments demonstrate the state-of-the-art performance of the ATDCnet on multiple benchmark datasets.
Abstract:Video colorization, aiming at obtaining colorful and plausible results from grayish frames, has aroused a lot of interest recently. Nevertheless, how to maintain temporal consistency while keeping the quality of colorized results remains challenging. To tackle the above problems, we present a Histogram-guided Video Colorization with Spatial-Temporal connection structure (named ST-HVC). To fully exploit the chroma and motion information, the joint flow and histogram module is tailored to integrate the histogram and flow features. To manage the blurred and artifact, we design a combination scheme attending to temporal detail and flow feature combination. We further recombine the histogram, flow and sharpness features via a U-shape network. Extensive comparisons are conducted with several state-of-the-art image and video-based methods, demonstrating that the developed method achieves excellent performance both quantitatively and qualitatively in two video datasets.
Abstract:A comprehensive understanding of interested human-to-human interactions in video streams, such as queuing, handshaking, fighting and chasing, is of immense importance to the surveillance of public security in regions like campuses, squares and parks. Different from conventional human interaction recognition, which uses choreographed videos as inputs, neglects concurrent interactive groups, and performs detection and recognition in separate stages, we introduce a new task named human-to-human interaction detection (HID). HID devotes to detecting subjects, recognizing person-wise actions, and grouping people according to their interactive relations, in one model. First, based on the popular AVA dataset created for action detection, we establish a new HID benchmark, termed AVA-Interaction (AVA-I), by adding annotations on interactive relations in a frame-by-frame manner. AVA-I consists of 85,254 frames and 86,338 interactive groups, and each image includes up to 4 concurrent interactive groups. Second, we present a novel baseline approach SaMFormer for HID, containing a visual feature extractor, a split stage which leverages a Transformer-based model to decode action instances and interactive groups, and a merging stage which reconstructs the relationship between instances and groups. All SaMFormer components are jointly trained in an end-to-end manner. Extensive experiments on AVA-I validate the superiority of SaMFormer over representative methods. The dataset and code will be made public to encourage more follow-up studies.
Abstract:Cross-modal retrieval has drawn much attention in both computer vision and natural language processing domains. With the development of convolutional and recurrent neural networks, the bottleneck of retrieval across image-text modalities is no longer the extraction of image and text features but an efficient loss function learning in embedding space. Many loss functions try to closer pairwise features from heterogeneous modalities. This paper proposes a method for learning joint embedding of images and texts using an intra-modal constraint loss function to reduce the violation of negative pairs from the same homogeneous modality. Experimental results show that our approach outperforms state-of-the-art bi-directional image-text retrieval methods on Flickr30K and Microsoft COCO datasets. Our code is publicly available: https://github.com/CanonChen/IMC.