Abstract:Underwater images often suffer from color distortion and low contrast resulting in various image types, due to the scattering and absorption of light by water. While it is difficult to obtain high-quality paired training samples with a generalized model. To tackle these challenges, we design a Generalized Underwater image enhancement method via a Physical-knowledge-guided Dynamic Model (short for GUPDM), consisting of three parts: Atmosphere-based Dynamic Structure (ADS), Transmission-guided Dynamic Structure (TDS), and Prior-based Multi-scale Structure (PMS). In particular, to cover complex underwater scenes, this study changes the global atmosphere light and the transmission to simulate various underwater image types (e.g., the underwater image color ranging from yellow to blue) through the formation model. We then design ADS and TDS that use dynamic convolutions to adaptively extract prior information from underwater images and generate parameters for PMS. These two modules enable the network to select appropriate parameters for various water types adaptively. Besides, the multi-scale feature extraction module in PMS uses convolution blocks with different kernel sizes and obtains weights for each feature map via channel attention block and fuses them to boost the receptive field of the network. The source code will be available at \href{https://github.com/shiningZZ/GUPDM}{https://github.com/shiningZZ/GUPDM}.
Abstract:Video colorization, aiming at obtaining colorful and plausible results from grayish frames, has aroused a lot of interest recently. Nevertheless, how to maintain temporal consistency while keeping the quality of colorized results remains challenging. To tackle the above problems, we present a Histogram-guided Video Colorization with Spatial-Temporal connection structure (named ST-HVC). To fully exploit the chroma and motion information, the joint flow and histogram module is tailored to integrate the histogram and flow features. To manage the blurred and artifact, we design a combination scheme attending to temporal detail and flow feature combination. We further recombine the histogram, flow and sharpness features via a U-shape network. Extensive comparisons are conducted with several state-of-the-art image and video-based methods, demonstrating that the developed method achieves excellent performance both quantitatively and qualitatively in two video datasets.