Abstract:Traffic predictions play a crucial role in intelligent transportation systems. The rapid development of IoT devices allows us to collect different kinds of data with high correlations to traffic predictions, fostering the development of efficient multi-modal traffic prediction models. Until now, there are few studies focusing on utilizing advantages of multi-modal data for traffic predictions. In this paper, we introduce a novel temporal attentive cross-modality transformer model for long-term traffic predictions, namely xMTrans, with capability of exploring the temporal correlations between the data of two modalities: one target modality (for prediction, e.g., traffic congestion) and one support modality (e.g., people flow). We conducted extensive experiments to evaluate our proposed model on traffic congestion and taxi demand predictions using real-world datasets. The results showed the superiority of xMTrans against recent state-of-the-art methods on long-term traffic predictions. In addition, we also conducted a comprehensive ablation study to further analyze the effectiveness of each module in xMTrans.
Abstract:Aspect-based sentiment classification (ASC) aims to judge the sentiment polarity conveyed by the given aspect term in a sentence. The sentiment polarity is not only determined by the local context but also related to the words far away from the given aspect term. Most recent efforts related to the attention-based models can not sufficiently distinguish which words they should pay more attention to in some cases. Meanwhile, graph-based models are coming into ASC to encode syntactic dependency tree information. But these models do not fully leverage syntactic dependency trees as they neglect to incorporate dependency relation tag information into representation learning effectively. In this paper, we address these problems by effectively modeling the local and global features. Firstly, we design a local encoder containing: a Gaussian mask layer and a covariance self-attention layer. The Gaussian mask layer tends to adjust the receptive field around aspect terms adaptively to deemphasize the effects of unrelated words and pay more attention to local information. The covariance self-attention layer can distinguish the attention weights of different words more obviously. Furthermore, we propose a dual-level graph attention network as a global encoder by fully employing dependency tag information to capture long-distance information effectively. Our model achieves state-of-the-art performance on both SemEval 2014 and Twitter datasets.
Abstract:Causal analysis for time series data, in particular estimating individualized treatment effect (ITE), is a key task in many real-world applications, such as finance, retail, healthcare, etc. Real-world time series can include large-scale, irregular, and intermittent time series observations, raising significant challenges to existing work attempting to estimate treatment effects. Specifically, the existence of hidden confounders can lead to biased treatment estimates and complicate the causal inference process. In particular, anomaly hidden confounders which exceed the typical range can lead to high variance estimates. Moreover, in continuous time settings with irregular samples, it is challenging to directly handle the dynamics of causality. In this paper, we leverage recent advances in Lipschitz regularization and neural controlled differential equations (CDE) to develop an effective and scalable solution, namely LipCDE, to address the above challenges. LipCDE can directly model the dynamic causal relationships between historical data and outcomes with irregular samples by considering the boundary of hidden confounders given by Lipschitz-constrained neural networks. Furthermore, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate the effectiveness and scalability of LipCDE.