University of Maryland Baltimore County
Abstract:With the rapid scaling of neural networks, data storage and communication demands have intensified. Dataset distillation has emerged as a promising solution, condensing information from extensive datasets into a compact set of synthetic samples by solving a bilevel optimization problem. However, current methods face challenges in computational efficiency, particularly with high-resolution data and complex architectures. Recently, knowledge-distillation-based dataset condensation approaches have made this process more computationally feasible. Yet, with the recent developments of generative foundation models, there is now an opportunity to achieve even greater compression, enhance the quality of distilled data, and introduce valuable diversity into the data representation. In this work, we propose a two-stage solution. First, we compress the dataset by selecting only the most informative patches to form a coreset. Next, we leverage a generative foundation model to dynamically expand this compressed set in real-time, enhancing the resolution of these patches and introducing controlled variability to the coreset. Our extensive experiments demonstrate the robustness and efficiency of our approach across a range of dataset distillation benchmarks. We demonstrate a significant improvement of over 10% compared to the state-of-the-art on several large-scale dataset distillation benchmarks. The code will be released soon.
Abstract:The goal of this paper is to improve (upcycle) an existing large language model without the prohibitive requirements of continued pre-training of the full-model. The idea is to split the pre-training data into semantically relevant groups and train an expert on each subset. An expert takes the form of a lightweight adapter added on the top of a frozen base model. During inference, an incoming query is first routed to the most relevant expert which is then loaded onto the base model for the forward pass. Unlike typical Mixture of Experts (MoE) models, the experts in our method do not work with other experts for a single query. Hence, we dub them "introvert" experts. Freezing the base model and keeping the experts as lightweight adapters allows extreme parallelism during training and inference. Training of all experts can be done in parallel without any communication channels between them. Similarly, the inference can also be heavily parallelized by distributing experts on different GPUs and routing each request to the GPU containing its relevant expert. We implement a proof-of-concept version of this method and show the validity of our approach.
Abstract:The outstanding performance of large foundational models across diverse tasks-from computer vision to speech and natural language processing-has significantly increased their demand. However, storing and transmitting these models pose significant challenges due to their massive size (e.g., 350GB for GPT-3). Recent literature has focused on compressing the original weights or reducing the number of parameters required for fine-tuning these models. These compression methods typically involve constraining the parameter space, for example, through low-rank reparametrization (e.g., LoRA) or quantization (e.g., QLoRA) during model training. In this paper, we present MCNC as a novel model compression method that constrains the parameter space to low-dimensional pre-defined and frozen nonlinear manifolds, which effectively cover this space. Given the prevalence of good solutions in over-parameterized deep neural networks, we show that by constraining the parameter space to our proposed manifold, we can identify high-quality solutions while achieving unprecedented compression rates across a wide variety of tasks. Through extensive experiments in computer vision and natural language processing tasks, we demonstrate that our method, MCNC, significantly outperforms state-of-the-art baselines in terms of compression, accuracy, and/or model reconstruction time.
Abstract:The extensive amounts of data required for training deep neural networks pose significant challenges on storage and transmission fronts. Dataset distillation has emerged as a promising technique to condense the information of massive datasets into a much smaller yet representative set of synthetic samples. However, traditional dataset distillation approaches often struggle to scale effectively with high-resolution images and more complex architectures due to the limitations in bi-level optimization. Recently, several works have proposed exploiting knowledge distillation with decoupled optimization schemes to scale up dataset distillation. Although these methods effectively address the scalability issue, they rely on extensive image augmentations requiring the storage of soft labels for augmented images. In this paper, we introduce Dataset Distillation using Diffusion Models (D3M) as a novel paradigm for dataset distillation, leveraging recent advancements in generative text-to-image foundation models. Our approach utilizes textual inversion, a technique for fine-tuning text-to-image generative models, to create concise and informative representations for large datasets. By employing these learned text prompts, we can efficiently store and infer new samples for introducing data variability within a fixed memory budget. We show the effectiveness of our method through extensive experiments across various computer vision benchmark datasets with different memory budgets.
Abstract:Data augmentation is crucial in training deep models, preventing them from overfitting to limited data. Common data augmentation methods are effective, but recent advancements in generative AI, such as diffusion models for image generation, enable more sophisticated augmentation techniques that produce data resembling natural images. We recognize that augmented samples closer to the ideal decision boundary of a classifier are particularly effective and efficient in guiding the learning process. We introduce GeNIe which leverages a diffusion model conditioned on a text prompt to merge contrasting data points (an image from the source category and a text prompt from the target category) to generate challenging samples for the target category. Inspired by recent image editing methods, we limit the number of diffusion iterations and the amount of noise. This ensures that the generated image retains low-level and contextual features from the source image, potentially conflicting with the target category. Our extensive experiments, in few-shot and also long-tail distribution settings, demonstrate the effectiveness of our novel augmentation method, especially benefiting categories with a limited number of examples.
Abstract:3D Gaussian Splatting is a new method for modeling and rendering 3D radiance fields that achieves much faster learning and rendering time compared to SOTA NeRF methods. However, it comes with a drawback in the much larger storage demand compared to NeRF methods since it needs to store the parameters for several 3D Gaussians. We notice that many Gaussians may share similar parameters, so we introduce a simple vector quantization method based on \kmeans algorithm to quantize the Gaussian parameters. Then, we store the small codebook along with the index of the code for each Gaussian. Moreover, we compress the indices further by sorting them and using a method similar to run-length encoding. We do extensive experiments on standard benchmarks as well as a new benchmark which is an order of magnitude larger than the standard benchmarks. We show that our simple yet effective method can reduce the storage cost for the original 3D Gaussian Splatting method by a factor of almost $20\times$ with a very small drop in the quality of rendered images.
Abstract:Continual learning has gained substantial attention within the deep learning community, offering promising solutions to the challenging problem of sequential learning. Yet, a largely unexplored facet of this paradigm is its susceptibility to adversarial attacks, especially with the aim of inducing forgetting. In this paper, we introduce "BrainWash," a novel data poisoning method tailored to impose forgetting on a continual learner. By adding the BrainWash noise to a variety of baselines, we demonstrate how a trained continual learner can be induced to forget its previously learned tasks catastrophically, even when using these continual learning baselines. An important feature of our approach is that the attacker requires no access to previous tasks' data and is armed merely with the model's current parameters and the data belonging to the most recent task. Our extensive experiments highlight the efficacy of BrainWash, showcasing degradation in performance across various regularization-based continual learning methods.
Abstract:Recently, there has been a lot of progress in reducing the computation of deep models at inference time. These methods can reduce both the computational needs and power usage of deep models. Some of these approaches adaptively scale the compute based on the input instance. We show that such models can be vulnerable to a universal adversarial patch attack, where the attacker optimizes for a patch that when pasted on any image, can increase the compute and power consumption of the model. We run experiments with three different efficient vision transformer methods showing that in some cases, the attacker can increase the computation to the maximum possible level by simply pasting a patch that occupies only 8\% of the image area. We also show that a standard adversarial training defense method can reduce some of the attack's success. We believe adaptive efficient methods will be necessary for the future to lower the power usage of deep models, so we hope our paper encourages the community to study the robustness of these methods and develop better defense methods for the proposed attack.
Abstract:Large Language Models (LLMs) have recently gained popularity due to their impressive few-shot performance across various downstream tasks. However, fine-tuning all parameters and storing a unique model for each downstream task or domain becomes impractical because of the massive size of checkpoints (e.g., 350GB in GPT-3). Current literature, such as LoRA, showcases the potential of low-rank modifications to the original weights of an LLM, enabling efficient adaptation and storage for task-specific models. These methods can reduce the number of parameters needed to fine-tune an LLM by several orders of magnitude. Yet, these methods face two primary limitations: 1) the parameter reduction is lower-bounded by the rank one decomposition, and 2) the extent of reduction is heavily influenced by both the model architecture and the chosen rank. For instance, in larger models, even a rank one decomposition might exceed the number of parameters truly needed for adaptation. In this paper, we introduce NOLA, which overcomes the rank one lower bound present in LoRA. It achieves this by re-parameterizing the low-rank matrices in LoRA using linear combinations of randomly generated matrices (basis) and optimizing the linear mixture coefficients only. This approach allows us to decouple the number of trainable parameters from both the choice of rank and the network architecture. We present adaptation results using GPT-2 and ViT in natural language and computer vision tasks. NOLA performs as well as, or better than models with equivalent parameter counts. Furthermore, we demonstrate that we can halve the parameters in larger models compared to LoRA with rank one, without sacrificing performance.
Abstract:Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.