Abstract:Data augmentation is crucial in training deep models, preventing them from overfitting to limited data. Common data augmentation methods are effective, but recent advancements in generative AI, such as diffusion models for image generation, enable more sophisticated augmentation techniques that produce data resembling natural images. We recognize that augmented samples closer to the ideal decision boundary of a classifier are particularly effective and efficient in guiding the learning process. We introduce GeNIe which leverages a diffusion model conditioned on a text prompt to merge contrasting data points (an image from the source category and a text prompt from the target category) to generate challenging samples for the target category. Inspired by recent image editing methods, we limit the number of diffusion iterations and the amount of noise. This ensures that the generated image retains low-level and contextual features from the source image, potentially conflicting with the target category. Our extensive experiments, in few-shot and also long-tail distribution settings, demonstrate the effectiveness of our novel augmentation method, especially benefiting categories with a limited number of examples.
Abstract:Humans have a unique ability to learn new representations from just a handful of examples with little to no supervision. Deep learning models, however, require an abundance of data and supervision to perform at a satisfactory level. Unsupervised few-shot learning (U-FSL) is the pursuit of bridging this gap between machines and humans. Inspired by the capacity of graph neural networks (GNNs) in discovering complex inter-sample relationships, we propose a novel self-attention based message passing contrastive learning approach (coined as SAMP-CLR) for U-FSL pre-training. We also propose an optimal transport (OT) based fine-tuning strategy (we call OpT-Tune) to efficiently induce task awareness into our novel end-to-end unsupervised few-shot classification framework (SAMPTransfer). Our extensive experimental results corroborate the efficacy of SAMPTransfer in a variety of downstream few-shot classification scenarios, setting a new state-of-the-art for U-FSL on both miniImagenet and tieredImagenet benchmarks, offering up to 7%+ and 5%+ improvements, respectively. Our further investigations also confirm that SAMPTransfer remains on-par with some supervised baselines on miniImagenet and outperforms all existing U-FSL baselines in a challenging cross-domain scenario. Our code can be found in our GitHub repository at https://github.com/ojss/SAMPTransfer/.
Abstract:The versatility to learn from a handful of samples is the hallmark of human intelligence. Few-shot learning is an endeavour to transcend this capability down to machines. Inspired by the promise and power of probabilistic deep learning, we propose a novel variational inference network for few-shot classification (coined as TRIDENT) to decouple the representation of an image into semantic and label latent variables, and simultaneously infer them in an intertwined fashion. To induce task-awareness, as part of the inference mechanics of TRIDENT, we exploit information across both query and support images of a few-shot task using a novel built-in attention-based transductive feature extraction module (we call AttFEX). Our extensive experimental results corroborate the efficacy of TRIDENT and demonstrate that, using the simplest of backbones, it sets a new state-of-the-art in the most commonly adopted datasets miniImageNet and tieredImageNet (offering up to 4% and 5% improvements, respectively), as well as for the recent challenging cross-domain miniImagenet --> CUB scenario offering a significant margin (up to 20% improvement) beyond the best existing cross-domain baselines. Code and experimentation can be found in our GitHub repository: https://github.com/anujinho/trident