Abstract:Bearing fault diagnosis technology has a wide range of practical applications in industrial production, energy and other fields. Timely and accurate detection of bearing faults plays an important role in preventing catastrophic accidents and ensuring product quality. Traditional signal analysis techniques and deep learning-based fault detection algorithms do not take into account the intricate correlation between signals, making it difficult to further improve detection accuracy. To address this problem, we introduced Graph Sampling and Aggregation (GraphSAGE) network and proposed GraphSAGE-based Bearing fault Diagnosis (GSABFD) algorithm. The original vibration signal is firstly sliced through a fixed size non-overlapping sliding window, and the sliced data is feature transformed using signal analysis methods; then correlations are constructed for the transformed vibration signal and further transformed into vertices in the graph; then the GraphSAGE network is used for training; finally the fault level of the object is calculated in the output layer of the network. The proposed algorithm is compared with five advanced algorithms in a real-world public dataset for experiments, and the results show that the GSABFD algorithm improves the AUC value by 5% compared with the next best algorithm.
Abstract:Here we propose and investigate the use of visibility graphs to model the feature map of a neural network. The model, initially devised for studies on complex networks, is employed here for the classification of texture images. The work is motivated by an alternative viewpoint provided by these graphs over the original data. The performance of the proposed method is verified in the classification of four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and UMD and in a practical problem, which is the identification of plant species using scanned images of their leaves. Our method was competitive with other state-of-the-art approaches, confirming the potential of techniques used for data analysis in different contexts to give more meaningful interpretation to the use of neural networks in texture classification.
Abstract:Knowledge distillation is a standard teacher-student learning framework to train a light-weight student network under the guidance of a well-trained large teacher network. As an effective teaching strategy, interactive teaching has been widely employed at school to motivate students, in which teachers not only provide knowledge but also give constructive feedback to students upon their responses, to improve their learning performance. In this work, we propose an InterActive Knowledge Distillation (IAKD) scheme to leverage the interactive teaching strategy for efficient knowledge distillation. In the distillation process, the interaction between teacher and student networks is implemented by a swapping-in operation: randomly replacing the blocks in the student network with the corresponding blocks in the teacher network. In the way, we directly involve the teacher's powerful feature transformation ability to largely boost the student's performance. Experiments with typical settings of teacher-student networks demonstrate that the student networks trained by our IAKD achieve better performance than those trained by conventional knowledge distillation methods on diverse image classification datasets.
Abstract:The rapid development of deep learning (DL) has driven single image super-resolution (SR) into a new era. However, in most existing DL based image SR networks, the information flows are solely feedforward, and the high-level features cannot be fully explored. In this paper, we propose the gated multiple feedback network (GMFN) for accurate image SR, in which the representation of low-level features are efficiently enriched by rerouting multiple high-level features. We cascade multiple residual dense blocks (RDBs) and recurrently unfolds them across time. The multiple feedback connections between two adjacent time steps in the proposed GMFN exploits multiple high-level features captured under large receptive fields to refine the low-level features lacking enough contextual information. The elaborately designed gated feedback module (GFM) efficiently selects and further enhances useful information from multiple rerouted high-level features, and then refine the low-level features with the enhanced high-level information. Extensive experiments demonstrate the superiority of our proposed GMFN against state-of-the-art SR methods in terms of both quantitative metrics and visual quality. Code is available at https://github.com/liqilei/GMFN.
Abstract:In computer vision and image processing tasks, image fusion has evolved into an attractive research field. However, recent existing image fusion methods are mostly built on pixel-level operations, which may produce unacceptable artifacts and are time-consuming. In this paper, a symmetric encoder-decoder with a residual block (SEDR) for infrared and visible image fusion is proposed. For the training stage, the SEDR network is trained with a new dataset to obtain a fixed feature extractor. For the fusion stage, first, the trained model is utilized to extract the intermediate features and compensation features of two source images. Then, extracted intermediate features are used to generate two attention maps, which are multiplied to the input features for refinement. In addition, the compensation features generated by the first two convolutional layers are merged and passed to the corresponding deconvolutional layers. At last, the refined features are fused for decoding to reconstruct the final fused image. Experimental results demonstrate that the proposed fusion method (named as SEDRFuse) outperforms the state-of-the-art fusion methods in terms of both subjective and objective evaluations.
Abstract:Recent advances in image super-resolution (SR) explored the power of deep learning to achieve a better reconstruction performance. However, the feedback mechanism, which commonly exists in human visual system, has not been fully exploited in existing deep learning based image SR methods. In this paper, we propose an image super-resolution feedback network (SRFBN) to refine low-level representations with high-level information. Specifically, we use hidden states in an RNN with constraints to achieve such feedback manner. A feedback block is designed to handle the feedback connections and to generate powerful high-level representations. The proposed SRFBN comes with a strong early reconstruction ability and can create the final high-resolution image step by step. In addition, we introduce a curriculum learning strategy to make the network well suitable for more complicated tasks, where the low-resolution images are corrupted by multiple types of degradation. Extensive experimental results demonstrate the superiority of the proposed SRFBN in comparison with the state-of-the-art methods. Code is avaliable at https://github.com/Paper99/SRFBN_CVPR19.