Abstract:Convolutional neural networks have shown successful results in image classification achieving real-time results superior to the human level. However, texture images still pose some challenge to these models due, for example, to the limited availability of data for training in several problems where these images appear, high inter-class similarity, the absence of a global viewpoint of the object represented, and others. In this context, the present paper is focused on improving the accuracy of convolutional neural networks in texture classification. This is done by extracting features from multiple convolutional layers of a pretrained neural network and aggregating such features using Fisher vector. The reason for using features from earlier convolutional layers is obtaining information that is less domain specific. We verify the effectiveness of our method on texture classification of benchmark datasets, as well as on a practical task of Brazilian plant species identification. In both scenarios, Fisher vectors calculated on multiple layers outperform state-of-art methods, confirming that early convolutional layers provide important information about the texture image for classification.
Abstract:Here we propose a new method for the classification of texture images combining fractal measures (fractal dimension, multifractal spectrum and lacunarity) with local binary patterns. More specifically we compute the box counting dimension of the local binary codes thresholded at different levels to compose the feature vector. The proposal is assessed in the classification of three benchmark databases: KTHTIPS-2b, UMD and UIUC as well as in a real-world problem, namely the identification of Brazilian plant species (database 1200Tex) using scanned images of their leaves. The proposed method demonstrated to be competitive with other state-of-the-art solutions reported in the literature. Such results confirmed the potential of combining a powerful local coding description with the multiscale information captured by the fractal dimension for texture classification.
Abstract:Here we propose and investigate the use of visibility graphs to model the feature map of a neural network. The model, initially devised for studies on complex networks, is employed here for the classification of texture images. The work is motivated by an alternative viewpoint provided by these graphs over the original data. The performance of the proposed method is verified in the classification of four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and UMD and in a practical problem, which is the identification of plant species using scanned images of their leaves. Our method was competitive with other state-of-the-art approaches, confirming the potential of techniques used for data analysis in different contexts to give more meaningful interpretation to the use of neural networks in texture classification.
Abstract:In this work, we present a novel methodology for texture image recognition using a partial differential equation modeling. More specifically, we employ the pseudo-parabolic Buckley-Leverett equation to provide a dynamics to the digital image representation and collect local descriptors from those images evolving in time. For the local descriptors we employ the magnitude and signal binary patterns and a simple histogram of these features was capable of achieving promising results in a classification task. We compare the accuracy over well established benchmark texture databases and the results demonstrate competitiveness, even with the most modern deep learning approaches. The achieved results open space for future investigation on this type of modeling for image analysis, especially when there is no large amount of data for training deep learning models and therefore model-based approaches arise as suitable alternatives.
Abstract:This work proposes a novel method based on a pseudo-parabolic diffusion process to be employed for texture recognition. The proposed operator is applied over a range of time scales giving rise to a family of images transformed by nonlinear filters. Therefore each of those images are encoded by a local descriptor (we use local binary patterns for that purpose) and they are summarized by a simple histogram, yielding in this way the image feature vector. The proposed approach is tested on the classification of well established benchmark texture databases and on a practical task of plant species recognition. In both cases, it is compared with several state-of-the-art methodologies employed for texture recognition. Our proposal outperforms those methods in terms of classification accuracy, confirming its competitiveness. The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image at the same time that it preserves discontinuities that convey critical information for the object description. Such results also confirm that model-based approaches like the proposed one can still be competitive with the omnipresent learning-based approaches, especially when the user does not have access to a powerful computational structure and a large amount of labeled data for training.