Abstract:Sequential Recommender Systems (SRSs) have emerged as a highly efficient approach to recommendation systems. By leveraging sequential data, SRSs can identify temporal patterns in user behaviour, significantly improving recommendation accuracy and relevance.Ensuring the reproducibility of these models is paramount for advancing research and facilitating comparisons between them. Existing works exhibit shortcomings in reproducibility and replicability of results, leading to inconsistent statements across papers. Our work fills these gaps by standardising data pre-processing and model implementations, providing a comprehensive code resource, including a framework for developing SRSs and establishing a foundation for consistent and reproducible experimentation. We conduct extensive experiments on several benchmark datasets, comparing various SRSs implemented in our resource. We challenge prevailing performance benchmarks, offering new insights into the SR domain. For instance, SASRec does not consistently outperform GRU4Rec. On the contrary, when the number of model parameters becomes substantial, SASRec starts to clearly dominate all the other SRSs. This discrepancy underscores the significant impact that experimental configuration has on the outcomes and the importance of setting it up to ensure precise and comprehensive results. Failure to do so can lead to significantly flawed conclusions, highlighting the need for rigorous experimental design and analysis in SRS research. Our code is available at https://github.com/antoniopurificato/recsys_repro_conf.
Abstract:Retrieval Augmented Generation (RAG) represents a significant advancement in artificial intelligence combining a retrieval phase with a generative phase, with the latter typically being powered by large language models (LLMs). The current common practices in RAG involve using "instructed" LLMs, which are fine-tuned with supervised training to enhance their ability to follow instructions and are aligned with human preferences using state-of-the-art techniques. Contrary to popular belief, our study demonstrates that base models outperform their instructed counterparts in RAG tasks by 20% on average under our experimental settings. This finding challenges the prevailing assumptions about the superiority of instructed LLMs in RAG applications. Further investigations reveal a more nuanced situation, questioning fundamental aspects of RAG and suggesting the need for broader discussions on the topic; or, as Fromm would have it, "Seldom is a glance at the statistics enough to understand the meaning of the figures".
Abstract:The ability to read, understand and find important information from written text is a critical skill in our daily lives for our independence, comfort and safety. However, a significant part of our society is affected by partial vision impairment, which leads to discomfort and dependency in daily activities. To address the limitations of this part of society, we propose an intelligent reading assistant based on smart glasses with embedded RGB cameras and a Large Language Model (LLM), whose functionality goes beyond corrective lenses. The video recorded from the egocentric perspective of a person wearing the glasses is processed to localise text information using object detection and optical character recognition methods. The LLM processes the data and allows the user to interact with the text and responds to a given query, thus extending the functionality of corrective lenses with the ability to find and summarize knowledge from the text. To evaluate our method, we create a chat-based application that allows the user to interact with the system. The evaluation is conducted in a real-world setting, such as reading menus in a restaurant, and involves four participants. The results show robust accuracy in text retrieval. The system not only provides accurate meal suggestions but also achieves high user satisfaction, highlighting the potential of smart glasses and LLMs in assisting people with special needs.
Abstract:Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.
Abstract:In this paper, we present a groundbreaking paradigm for human-computer interaction that revolutionizes the traditional notion of an operating system. Within this innovative framework, user requests issued to the machine are handled by an interconnected ecosystem of generative AI models that seamlessly integrate with or even replace traditional software applications. At the core of this paradigm shift are large generative models, such as language and diffusion models, which serve as the central interface between users and computers. This pioneering approach leverages the abilities of advanced language models, empowering users to engage in natural language conversations with their computing devices. Users can articulate their intentions, tasks, and inquiries directly to the system, eliminating the need for explicit commands or complex navigation. The language model comprehends and interprets the user's prompts, generating and displaying contextual and meaningful responses that facilitate seamless and intuitive interactions. This paradigm shift not only streamlines user interactions but also opens up new possibilities for personalized experiences. Generative models can adapt to individual preferences, learning from user input and continuously improving their understanding and response generation. Furthermore, it enables enhanced accessibility, as users can interact with the system using speech or text, accommodating diverse communication preferences. However, this visionary concept raises significant challenges, including privacy, security, trustability, and the ethical use of generative models. Robust safeguards must be in place to protect user data and prevent potential misuse or manipulation of the language model. While the full realization of this paradigm is still far from being achieved, this paper serves as a starting point for envisioning this transformative potential.
Abstract:The emergence of large language models (LLMs) has revolutionized machine learning and related fields, showcasing remarkable abilities in comprehending, generating, and manipulating human language. However, their conventional usage through API-based text prompt submissions imposes certain limitations in terms of context constraints and external source availability. To address these challenges, we propose a novel framework called Reinforced Retrieval Augmented Machine Learning (RRAML). RRAML integrates the reasoning capabilities of LLMs with supporting information retrieved by a purpose-built retriever from a vast user-provided database. By leveraging recent advancements in reinforcement learning, our method effectively addresses several critical challenges. Firstly, it circumvents the need for accessing LLM gradients. Secondly, our method alleviates the burden of retraining LLMs for specific tasks, as it is often impractical or impossible due to restricted access to the model and the computational intensity involved. Additionally we seamlessly link the retriever's task with the reasoner, mitigating hallucinations and reducing irrelevant, and potentially damaging retrieved documents. We believe that the research agenda outlined in this paper has the potential to profoundly impact the field of AI, democratizing access to and utilization of LLMs for a wide range of entities.
Abstract:This paper presents Fauno, the first and largest open-source Italian conversational Large Language Model (LLM). Our goal with Fauno is to democratize the study of LLMs in Italian, demonstrating that obtaining a fine-tuned conversational bot with a single GPU is possible. In addition, we release a collection of datasets for conversational AI in Italian. The datasets on which we fine-tuned Fauno include various topics such as general question answering, computer science, and medical questions. We release our code and datasets on \url{https://github.com/RSTLess-research/Fauno-Italian-LLM}
Abstract:Graph Neural Networks (GNNs) have become essential for studying complex data, particularly when represented as graphs. Their value is underpinned by their ability to reflect the intricacies of numerous areas, ranging from social to biological networks. GNNs can grapple with non-linear behaviors, emerging patterns, and complex connections; these are also typical characteristics of complex systems. The renormalization group (RG) theory has emerged as the language for studying complex systems. It is recognized as the preferred lens through which to study complex systems, offering a framework that can untangle their intricate dynamics. Despite the clear benefits of integrating RG theory with GNNs, no existing methods have ventured into this promising territory. This paper proposes a new approach that applies RG theory to devise a novel graph rewiring to improve GNNs' performance on graph-related tasks. We support our proposal with extensive experiments on standard benchmarks and baselines. The results demonstrate the effectiveness of our method and its potential to remedy the current limitations of GNNs. Finally, this paper marks the beginning of a new research direction. This path combines the theoretical foundations of RG, the magnifying glass of complex systems, with the structural capabilities of GNNs. By doing so, we aim to enhance the potential of GNNs in modeling and unraveling the complexities inherent in diverse systems.
Abstract:The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
Abstract:Graph Neural Networks (GNNs) have proven to be successful in several predictive modeling tasks for graph-structured data. Amongst those tasks, link prediction is one of the fundamental problems for many real-world applications, such as recommender systems. However, GNNs are not immune to adversarial attacks, i.e., carefully crafted malicious examples that are designed to fool the predictive model. In this work, we focus on a specific, white-box attack to GNN-based link prediction models, where a malicious node aims to appear in the list of recommended nodes for a given target victim. To achieve this goal, the attacker node may also count on the cooperation of other existing peers that it directly controls, namely on the ability to inject a number of ``vicious'' nodes in the network. Specifically, all these malicious nodes can add new edges or remove existing ones, thereby perturbing the original graph. Thus, we propose SAVAGE, a novel framework and a method to mount this type of link prediction attacks. SAVAGE formulates the adversary's goal as an optimization task, striking the balance between the effectiveness of the attack and the sparsity of malicious resources required. Extensive experiments conducted on real-world and synthetic datasets demonstrate that adversarial attacks implemented through SAVAGE indeed achieve high attack success rate yet using a small amount of vicious nodes. Finally, despite those attacks require full knowledge of the target model, we show that they are successfully transferable to other black-box methods for link prediction.