Abstract:In the past years, Graph Neural Networks (GNNs) have become the `de facto' standard in various deep learning domains, thanks to their flexibility in modeling real-world phenomena represented as graphs. However, the message-passing mechanism of GNNs faces challenges in learnability and expressivity, hindering high performance on heterophilic graphs, where adjacent nodes frequently have different labels. Most existing solutions addressing these challenges are primarily confined to specific benchmarks focused on node classification tasks. This narrow focus restricts the potential impact that link prediction under heterophily could offer in several applications, including recommender systems. For example, in social networks, two users may be connected for some latent reason, making it challenging to predict such connections in advance. Physics-Inspired GNNs such as GRAFF provided a significant contribution to enhance node classification performance under heterophily, thanks to the adoption of physics biases in the message-passing. Drawing inspiration from these findings, we advocate that the methodology employed by GRAFF can improve link prediction performance as well. To further explore this hypothesis, we introduce GRAFF-LP, an extension of GRAFF to link prediction. We evaluate its efficacy within a recent collection of heterophilic graphs, establishing a new benchmark for link prediction under heterophily. Our approach surpasses previous methods, in most of the datasets, showcasing a strong flexibility in different contexts, and achieving relative AUROC improvements of up to 26.7%.
Abstract:Graph Neural Networks (GNNs) have become essential for studying complex data, particularly when represented as graphs. Their value is underpinned by their ability to reflect the intricacies of numerous areas, ranging from social to biological networks. GNNs can grapple with non-linear behaviors, emerging patterns, and complex connections; these are also typical characteristics of complex systems. The renormalization group (RG) theory has emerged as the language for studying complex systems. It is recognized as the preferred lens through which to study complex systems, offering a framework that can untangle their intricate dynamics. Despite the clear benefits of integrating RG theory with GNNs, no existing methods have ventured into this promising territory. This paper proposes a new approach that applies RG theory to devise a novel graph rewiring to improve GNNs' performance on graph-related tasks. We support our proposal with extensive experiments on standard benchmarks and baselines. The results demonstrate the effectiveness of our method and its potential to remedy the current limitations of GNNs. Finally, this paper marks the beginning of a new research direction. This path combines the theoretical foundations of RG, the magnifying glass of complex systems, with the structural capabilities of GNNs. By doing so, we aim to enhance the potential of GNNs in modeling and unraveling the complexities inherent in diverse systems.