Abstract:Explainable Artificial Intelligence (XAI) has emerged as a critical area of research to unravel the opaque inner logic of (deep) machine learning models. Among the various XAI techniques proposed in the literature, counterfactual explanations stand out as one of the most promising approaches. However, these ``what-if'' explanations are frequently complex and technical, making them difficult for non-experts to understand and, more broadly, challenging for humans to interpret. To bridge this gap, in this work, we exploit the power of open-source Large Language Models to generate natural language explanations when prompted with valid counterfactual instances produced by state-of-the-art explainers for graph-based models. Experiments across several graph datasets and counterfactual explainers show that our approach effectively produces accurate natural language representations of counterfactual instances, as demonstrated by key performance metrics.
Abstract:Machine Unlearning, the process of selectively eliminating the influence of certain data examples used during a model's training, has gained significant attention as a means for practitioners to comply with recent data protection regulations. However, existing unlearning methods face critical drawbacks, including their prohibitively high cost, often associated with a large number of hyperparameters, and the limitation of forgetting only relatively small data portions. This often makes retraining the model from scratch a quicker and more effective solution. In this study, we introduce Gradient-based and Task-Agnostic machine Unlearning ($\nabla \tau$), an optimization framework designed to remove the influence of a subset of training data efficiently. It applies adaptive gradient ascent to the data to be forgotten while using standard gradient descent for the remaining data. $\nabla \tau$ offers multiple benefits over existing approaches. It enables the unlearning of large sections of the training dataset (up to 30%). It is versatile, supporting various unlearning tasks (such as subset forgetting or class removal) and applicable across different domains (images, text, etc.). Importantly, $\nabla \tau$ requires no hyperparameter adjustments, making it a more appealing option than retraining the model from scratch. We evaluate our framework's effectiveness using a set of well-established Membership Inference Attack metrics, demonstrating up to 10% enhancements in performance compared to state-of-the-art methods without compromising the original model's accuracy.
Abstract:Retrieval-Augmented Generation (RAG) systems represent a significant advancement over traditional Large Language Models (LLMs). RAG systems enhance their generation ability by incorporating external data retrieved through an Information Retrieval (IR) phase, overcoming the limitations of standard LLMs, which are restricted to their pre-trained knowledge and limited context window. Most research in this area has predominantly concentrated on the generative aspect of LLMs within RAG systems. Our study fills this gap by thoroughly and critically analyzing the influence of IR components on RAG systems. This paper analyzes which characteristics a retriever should possess for an effective RAG's prompt formulation, focusing on the type of documents that should be retrieved. We evaluate various elements, such as the relevance of the documents to the prompt, their position, and the number included in the context. Our findings reveal, among other insights, that including irrelevant documents can unexpectedly enhance performance by more than 30% in accuracy, contradicting our initial assumption of diminished quality. These results underscore the need for developing specialized strategies to integrate retrieval with language generation models, thereby laying the groundwork for future research in this field.
Abstract:In this paper, we present a groundbreaking paradigm for human-computer interaction that revolutionizes the traditional notion of an operating system. Within this innovative framework, user requests issued to the machine are handled by an interconnected ecosystem of generative AI models that seamlessly integrate with or even replace traditional software applications. At the core of this paradigm shift are large generative models, such as language and diffusion models, which serve as the central interface between users and computers. This pioneering approach leverages the abilities of advanced language models, empowering users to engage in natural language conversations with their computing devices. Users can articulate their intentions, tasks, and inquiries directly to the system, eliminating the need for explicit commands or complex navigation. The language model comprehends and interprets the user's prompts, generating and displaying contextual and meaningful responses that facilitate seamless and intuitive interactions. This paradigm shift not only streamlines user interactions but also opens up new possibilities for personalized experiences. Generative models can adapt to individual preferences, learning from user input and continuously improving their understanding and response generation. Furthermore, it enables enhanced accessibility, as users can interact with the system using speech or text, accommodating diverse communication preferences. However, this visionary concept raises significant challenges, including privacy, security, trustability, and the ethical use of generative models. Robust safeguards must be in place to protect user data and prevent potential misuse or manipulation of the language model. While the full realization of this paradigm is still far from being achieved, this paper serves as a starting point for envisioning this transformative potential.
Abstract:The two main research threads in computer-based music generation are: the construction of autonomous music-making systems, and the design of computer-based environments to assist musicians. In the symbolic domain, the key problem of automatically arranging a piece music was extensively studied, while relatively fewer systems tackled this challenge in the audio domain. In this contribution, we propose CycleDRUMS, a novel method for generating drums given a bass line. After converting the waveform of the bass into a mel-spectrogram, we are able to automatically generate original drums that follow the beat, sound credible and can be directly mixed with the input bass. We formulated this task as an unpaired image-to-image translation problem, and we addressed it with CycleGAN, a well-established unsupervised style transfer framework, originally designed for treating images. The choice to deploy raw audio and mel-spectrograms enabled us to better represent how humans perceive music, and to potentially draw sounds for new arrangements from the vast collection of music recordings accumulated in the last century. In absence of an objective way of evaluating the output of both generative adversarial networks and music generative systems, we further defined a possible metric for the proposed task, partially based on human (and expert) judgement. Finally, as a comparison, we replicated our results with Pix2Pix, a paired image-to-image translation network, and we showed that our approach outperforms it.