Abstract:Monitoring, understanding, and optimizing the energy consumption of Machine Learning (ML) are various reasons why it is necessary to evaluate the energy usage of ML. However, there exists no universal tool that can answer this question for all use cases, and there may even be disagreement on how to evaluate energy consumption for a specific use case. Tools and methods are based on different approaches, each with their own advantages and drawbacks, and they need to be mapped out and explained in order to select the most suitable one for a given situation. We address this challenge through two approaches. First, we conduct a systematic literature review of all tools and methods that permit to evaluate the energy consumption of ML (both at training and at inference), irrespective of whether they were originally designed for machine learning or general software. Second, we develop and use an experimental protocol to compare a selection of these tools and methods. The comparison is both qualitative and quantitative on a range of ML tasks of different nature (vision, language) and computational complexity. The systematic literature review serves as a comprehensive guide for understanding the array of tools and methods used in evaluating energy consumption of ML, for various use cases going from basic energy monitoring to consumption optimization. Two open-source repositories are provided for further exploration. The first one contains tools that can be used to replicate this work or extend the current review. The second repository houses the experimental protocol, allowing users to augment the protocol with new ML computing tasks and additional energy evaluation tools.
Abstract:Federated learning algorithms, such as FedAvg, are negatively affected by data heterogeneity and partial client participation. To mitigate the latter problem, global variance reduction methods, like FedVARP, leverage stale model updates for non-participating clients. These methods are effective under homogeneous client participation. Yet, this paper shows that, when some clients participate much less than others, aggregating updates with different levels of staleness can detrimentally affect the training process. Motivated by this observation, we introduce FedStale, a novel algorithm that updates the global model in each round through a convex combination of "fresh" updates from participating clients and "stale" updates from non-participating ones. By adjusting the weight in the convex combination, FedStale interpolates between FedAvg, which only uses fresh updates, and FedVARP, which treats fresh and stale updates equally. Our analysis of FedStale convergence yields the following novel findings: i) it integrates and extends previous FedAvg and FedVARP analyses to heterogeneous client participation; ii) it underscores how the least participating client influences convergence error; iii) it provides practical guidelines to best exploit stale updates, showing that their usefulness diminishes as data heterogeneity decreases and participation heterogeneity increases. Extensive experiments featuring diverse levels of client data and participation heterogeneity not only confirm these findings but also show that FedStale outperforms both FedAvg and FedVARP in many settings.
Abstract:As Internet of Things (IoT) technology advances, end devices like sensors and smartphones are progressively equipped with AI models tailored to their local memory and computational constraints. Local inference reduces communication costs and latency; however, these smaller models typically underperform compared to more sophisticated models deployed on edge servers or in the cloud. Cooperative Inference Systems (CISs) address this performance trade-off by enabling smaller devices to offload part of their inference tasks to more capable devices. These systems often deploy hierarchical models that share numerous parameters, exemplified by Deep Neural Networks (DNNs) that utilize strategies like early exits or ordered dropout. In such instances, Federated Learning (FL) may be employed to jointly train the models within a CIS. Yet, traditional training methods have overlooked the operational dynamics of CISs during inference, particularly the potential high heterogeneity in serving rates across clients. To address this gap, we propose a novel FL approach designed explicitly for use in CISs that accounts for these variations in serving rates. Our framework not only offers rigorous theoretical guarantees, but also surpasses state-of-the-art (SOTA) training algorithms for CISs, especially in scenarios where inference request rates or data availability are uneven among clients.
Abstract:The commonly used caching policies, such as LRU or LFU, exhibit optimal performance only for specific traffic patterns. Even advanced Machine Learning-based methods, which detect patterns in historical request data, struggle when future requests deviate from past trends. Recently, a new class of policies has emerged that makes no assumptions about the request arrival process. These algorithms solve an online optimization problem, enabling continuous adaptation to the context. They offer theoretical guarantees on the regret metric, which is the gap between the gain of the online policy and the gain of the optimal static cache allocation in hindsight. Nevertheless, the high computational complexity of these solutions hinders their practical adoption. In this study, we introduce a groundbreaking gradient-based online caching policy, the first to achieve logarithmic computational complexity relative to catalog size along with regret guarantees. This means our algorithm can efficiently handle large-scale data while minimizing the performance gap between real-time decisions and optimal hindsight choices. As requests arrive, our policy dynamically adjusts the probabilities of including items in the cache, which drive cache update decisions. Our algorithm's streamlined complexity is a key advantage, enabling its application to real-world traces featuring millions of requests and items. This is a significant achievement, as traces of this scale have been out of reach for existing policies with regret guarantees. To the best of our knowledge, our experimental results show for the first time that the regret guarantees of gradient-based caching policies bring significant benefits in scenarios of practical interest.
Abstract:In numerous settings, agents lack sufficient data to directly learn a model. Collaborating with other agents may help, but it introduces a bias-variance trade-off, when local data distributions differ. A key challenge is for each agent to identify clients with similar distributions while learning the model, a problem that remains largely unresolved. This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean. Existing algorithms face impractical space and time complexities (quadratic in the number of agents A). To address scalability challenges, we propose a framework where agents self-organize into a graph, allowing each agent to communicate with only a selected number of peers r. We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach, with complexity of O( r |A| log |A|) and O(r |A|), respectively. We establish conditions under which both algorithms yield asymptotically optimal estimates and offer a theoretical characterization of their performance.
Abstract:Within the realm of privacy-preserving machine learning, empirical privacy defenses have been proposed as a solution to achieve satisfactory levels of training data privacy without a significant drop in model utility. Most existing defenses against membership inference attacks assume access to reference data, defined as an additional dataset coming from the same (or a similar) underlying distribution as training data. Despite the common use of reference data, previous works are notably reticent about defining and evaluating reference data privacy. As gains in model utility and/or training data privacy may come at the expense of reference data privacy, it is essential that all three aspects are duly considered. In this paper, we first examine the availability of reference data and its privacy treatment in previous works and demonstrate its necessity for fairly comparing defenses. Second, we propose a baseline defense that enables the utility-privacy tradeoff with respect to both training and reference data to be easily understood. Our method is formulated as an empirical risk minimization with a constraint on the generalization error, which, in practice, can be evaluated as a weighted empirical risk minimization (WERM) over the training and reference datasets. Although we conceived of WERM as a simple baseline, our experiments show that, surprisingly, it outperforms the most well-studied and current state-of-the-art empirical privacy defenses using reference data for nearly all relative privacy levels of reference and training data. Our investigation also reveals that these existing methods are unable to effectively trade off reference data privacy for model utility and/or training data privacy. Overall, our work highlights the need for a proper evaluation of the triad model utility / training data privacy / reference data privacy when comparing privacy defenses.
Abstract:Online learning algorithms have been successfully used to design caching policies with regret guarantees. Existing algorithms assume that the cache knows the exact request sequence, but this may not be feasible in high load and/or memory-constrained scenarios, where the cache may have access only to sampled requests or to approximate requests' counters. In this paper, we propose the Noisy-Follow-the-Perturbed-Leader (NFPL) algorithm, a variant of the classic Follow-the-Perturbed-Leader (FPL) when request estimates are noisy, and we show that the proposed solution has sublinear regret under specific conditions on the requests estimator. The experimental evaluation compares the proposed solution against classic caching policies and validates the proposed approach under both synthetic and real request traces.
Abstract:Federated learning (FL) has enabled training machine learning models exploiting the data of multiple agents without compromising privacy. However, FL is known to be vulnerable to data heterogeneity, partial device participation, and infrequent communication with the server, which are nonetheless three distinctive characteristics of this framework. While much of the recent literature has tackled these weaknesses using different tools, only a few works have explored the possibility of exploiting inter-agent communication to improve FL's performance. In this work, we present FedDec, an algorithm that interleaves peer-to-peer communication and parameter averaging (similar to decentralized learning in networks) between the local gradient updates of FL. We analyze the convergence of FedDec under the assumptions of non-iid data distribution, partial device participation, and smooth and strongly convex costs, and show that inter-agent communication alleviates the negative impact of infrequent communication rounds with the server by reducing the dependence on the number of local updates $H$ from $O(H^2)$ to $O(H)$. Furthermore, our analysis reveals that the term improved in the bound is multiplied by a constant that depends on the spectrum of the inter-agent communication graph, and that vanishes quickly the more connected the network is. We confirm the predictions of our theory in numerical simulations, where we show that FedDec converges faster than FedAvg, and that the gains are greater as either $H$ or the connectivity of the network increase.
Abstract:The enormous amount of data produced by mobile and IoT devices has motivated the development of federated learning (FL), a framework allowing such devices (or clients) to collaboratively train machine learning models without sharing their local data. FL algorithms (like FedAvg) iteratively aggregate model updates computed by clients on their own datasets. Clients may exhibit different levels of participation, often correlated over time and with other clients. This paper presents the first convergence analysis for a FedAvg-like FL algorithm under heterogeneous and correlated client availability. Our analysis highlights how correlation adversely affects the algorithm's convergence rate and how the aggregation strategy can alleviate this effect at the cost of steering training toward a biased model. Guided by the theoretical analysis, we propose CA-Fed, a new FL algorithm that tries to balance the conflicting goals of maximizing convergence speed and minimizing model bias. To this purpose, CA-Fed dynamically adapts the weight given to each client and may ignore clients with low availability and large correlation. Our experimental results show that CA-Fed achieves higher time-average accuracy and a lower standard deviation than state-of-the-art AdaFed and F3AST, both on synthetic and real datasets.
Abstract:Federated learning (FL) is an effective solution to train machine learning models on the increasing amount of data generated by IoT devices and smartphones while keeping such data localized. Most previous work on federated learning assumes that clients operate on static datasets collected before training starts. This approach may be inefficient because 1) it ignores new samples clients collect during training, and 2) it may require a potentially long preparatory phase for clients to collect enough data. Moreover, learning on static datasets may be simply impossible in scenarios with small aggregate storage across devices. It is, therefore, necessary to design federated algorithms able to learn from data streams. In this work, we formulate and study the problem of \emph{federated learning for data streams}. We propose a general FL algorithm to learn from data streams through an opportune weighted empirical risk minimization. Our theoretical analysis provides insights to configure such an algorithm, and we evaluate its performance on a wide range of machine learning tasks.