Abstract:Music therapy has been shown in recent years to provide multiple health benefits related to emotional wellness. In turn, maintaining a healthy emotional state has proven to be effective for patients undergoing treatment, such as Parkinson's patients or patients suffering from stress and anxiety. We propose fine-tuning MusicGen, a music-generating transformer model, to create short musical clips that assist patients in transitioning from negative to desired emotional states. Using low-rank decomposition fine-tuning on the MTG-Jamendo Dataset with emotion tags, we generate 30-second clips that adhere to the iso principle, guiding patients through intermediate states in the valence-arousal circumplex. The generated music is evaluated using a music emotion recognition model to ensure alignment with intended emotions. By concatenating these clips, we produce a 15-minute "music medicine" resembling a music therapy session. Our approach is the first model to leverage Language Models to generate music medicine. Ultimately, the output is intended to be used as a temporary relief between music therapy sessions with a board-certified therapist.
Abstract:We propose a pre-training pipeline for audio spectrogram transformers for frame-level sound event detection tasks. On top of common pre-training steps, we add a meticulously designed training routine on AudioSet frame-level annotations. This includes a balanced sampler, aggressive data augmentation, and ensemble knowledge distillation. For five transformers, we obtain a substantial performance improvement over previously available checkpoints both on AudioSet frame-level predictions and on frame-level sound event detection downstream tasks, confirming our pipeline's effectiveness. We publish the resulting checkpoints that researchers can directly fine-tune to build high-performance models for sound event detection tasks.
Abstract:Query-by-Vocal Imitation (QBV) is about searching audio files within databases using vocal imitations created by the user's voice. Since most humans can effectively communicate sound concepts through voice, QBV offers the more intuitive and convenient approach compared to text-based search. To fully leverage QBV, developing robust audio feature representations for both the vocal imitation and the original sound is crucial. In this paper, we present a new system for QBV that utilizes the feature extraction capabilities of Convolutional Neural Networks pre-trained with large-scale general-purpose audio datasets. We integrate these pre-trained models into a dual encoder architecture and fine-tune them end-to-end using contrastive learning. A distinctive aspect of our proposed method is the fine-tuning strategy of pre-trained models using an adapted NT-Xent loss for contrastive learning, creating a shared embedding space for reference recordings and vocal imitations. The proposed system significantly enhances audio retrieval performance, establishing a new state of the art on both coarse- and fine-grained QBV tasks.
Abstract:Dual-encoder-based audio retrieval systems are commonly optimized with contrastive learning on a set of matching and mismatching audio-caption pairs. This leads to a shared embedding space in which corresponding items from the two modalities end up close together. Since audio-caption datasets typically only contain matching pairs of recordings and descriptions, it has become common practice to create mismatching pairs by pairing the audio with a caption randomly drawn from the dataset. This is not ideal because the randomly sampled caption could, just by chance, partly or entirely describe the audio recording. However, correspondence information for all possible pairs is costly to annotate and thus typically unavailable; we, therefore, suggest substituting it with estimated correspondences. To this end, we propose a two-staged training procedure in which multiple retrieval models are first trained as usual, i.e., without estimated correspondences. In the second stage, the audio-caption correspondences predicted by these models then serve as prediction targets. We evaluate our method on the ClothoV2 and the AudioCaps benchmark and show that it improves retrieval performance, even in a restricting self-distillation setting where a single model generates and then learns from the estimated correspondences. We further show that our method outperforms the current state of the art by 1.6 pp. mAP@10 on the ClothoV2 benchmark.
Abstract:In recent years, the quality and public interest in music generation systems have grown, encouraging research into various ways to control these systems. We propose a novel method for controlling surprisal in music generation using sequence models. To achieve this goal, we define a metric called Instantaneous Information Content (IIC). The IIC serves as a proxy function for the perceived musical surprisal (as estimated from a probabilistic model) and can be calculated at any point within a music piece. This enables the comparison of surprisal across different musical content even if the musical events occur in irregular time intervals. We use beam search to generate musical material whose IIC curve closely approximates a given target IIC. We experimentally show that the IIC correlates with harmonic and rhythmic complexity and note density. The correlation decreases with the length of the musical context used for estimating the IIC. Finally, we conduct a qualitative user study to test if human listeners can identify the IIC curves that have been used as targets when generating the respective musical material. We provide code for creating IIC interpolations and IIC visualizations on https://github.com/muthissar/iic.
Abstract:Automatic Music Transcription (AMT) is the task of recognizing notes in audio recordings of music. The State-of-the-Art (SotA) benchmarks have been dominated by deep learning systems. Due to the scarcity of high quality data, they are usually trained and evaluated exclusively or predominantly on classical piano music. Unfortunately, that hinders our ability to understand how they generalize to other music. Previous works have revealed several aspects of memorization and overfitting in these systems. We identify two primary sources of distribution shift: the music, and the sound. Complementing recent results on the sound axis (i.e. acoustics, timbre), we investigate the musical one (i.e. note combinations, dynamics, genre). We evaluate the performance of several SotA AMT systems on two new experimental test sets which we carefully construct to emulate different levels of musical distribution shift. Our results reveal a stark performance gap, shedding further light on the Corpus Bias problem, and the extent to which it continues to trouble these systems.
Abstract:Note alignment refers to the task of matching individual notes of two versions of the same symbolically encoded piece. Methods addressing this task commonly rely on sequence alignment algorithms such as Hidden Markov Models or Dynamic Time Warping (DTW) applied directly to note or onset sequences. While successful in many cases, such methods struggle with large mismatches between the versions. In this work, we learn note-wise representations from data augmented with various complex mismatch cases, e.g. repeats, skips, block insertions, and long trills. At the heart of our approach lies a transformer encoder network - TheGlueNote - which predicts pairwise note similarities for two 512 note subsequences. We postprocess the predicted similarities using flavors of weightedDTW and pitch-separated onsetDTW to retrieve note matches for two sequences of arbitrary length. Our approach performs on par with the state of the art in terms of note alignment accuracy, is considerably more robust to version mismatches, and works directly on any pair of MIDI files.
Abstract:We propose a system for tracking beats and downbeats with two objectives: generality across a diverse music range, and high accuracy. We achieve generality by training on multiple datasets -- including solo instrument recordings, pieces with time signature changes, and classical music with high tempo variations -- and by removing the commonly used Dynamic Bayesian Network (DBN) postprocessing, which introduces constraints on the meter and tempo. For high accuracy, among other improvements, we develop a loss function tolerant to small time shifts of annotations, and an architecture alternating convolutions with transformers either over frequency or time. Our system surpasses the current state of the art in F1 score despite using no DBN. However, it can still fail, especially for difficult and underrepresented genres, and performs worse on continuity metrics, so we publish our model, code, and preprocessed datasets, and invite others to beat this.
Abstract:Graph Neural Networks (GNNs) have recently gained traction in symbolic music tasks, yet a lack of a unified framework impedes progress. Addressing this gap, we present GraphMuse, a graph processing framework and library that facilitates efficient music graph processing and GNN training for symbolic music tasks. Central to our contribution is a new neighbor sampling technique specifically targeted toward meaningful behavior in musical scores. Additionally, GraphMuse integrates hierarchical modeling elements that augment the expressivity and capabilities of graph networks for musical tasks. Experiments with two specific musical prediction tasks -- pitch spelling and cadence detection -- demonstrate significant performance improvement over previous methods. Our hope is that GraphMuse will lead to a boost in, and standardization of, symbolic music processing based on graph representations. The library is available at https://github.com/manoskary/graphmuse
Abstract:A central problem in building effective sound event detection systems is the lack of high-quality, strongly annotated sound event datasets. For this reason, Task 4 of the DCASE 2024 challenge proposes learning from two heterogeneous datasets, including audio clips labeled with varying annotation granularity and with different sets of possible events. We propose a multi-iteration, multi-stage procedure for fine-tuning Audio Spectrogram Transformers on the joint DESED and MAESTRO Real datasets. The first stage closely matches the baseline system setup and trains a CRNN model while keeping the pre-trained transformer model frozen. In the second stage, both CRNN and transformer are fine-tuned using heavily weighted self-supervised losses. After the second stage, we compute strong pseudo-labels for all audio clips in the training set using an ensemble of fine-tuned transformers. Then, in a second iteration, we repeat the two-stage training process and include a distillation loss based on the pseudo-labels, achieving a new single-model, state-of-the-art performance on the public evaluation set of DESED with a PSDS1 of 0.692. A single model and an ensemble, both based on our proposed training procedure, ranked first in Task 4 of the DCASE Challenge 2024.