Abstract:Denoising Diffusion Probabilistic Models (DDPMs) have made great strides in generating high-quality samples in both discrete and continuous domains. However, Discrete DDPMs (D3PMs) have yet to be applied to the domain of Symbolic Music. This work presents the direct generation of Polyphonic Symbolic Music using D3PMs. Our model exhibits state-of-the-art sample quality, according to current quantitative evaluation metrics, and allows for flexible infilling at the note level. We further show, that our models are accessible to post-hoc classifier guidance, widening the scope of possible applications. However, we also cast a critical view on quantitative evaluation of music sample quality via statistical metrics, and present a simple algorithm that can confound our metrics with completely spurious, non-musical samples.
Abstract:This paper introduces the ACCompanion, an expressive accompaniment system. Similarly to a musician who accompanies a soloist playing a given musical piece, our system can produce a human-like rendition of the accompaniment part that follows the soloist's choices in terms of tempo, dynamics, and articulation. The ACCompanion works in the symbolic domain, i.e., it needs a musical instrument capable of producing and playing MIDI data, with explicitly encoded onset, offset, and pitch for each played note. We describe the components that go into such a system, from real-time score following and prediction to expressive performance generation and online adaptation to the expressive choices of the human player. Based on our experience with repeated live demonstrations in front of various audiences, we offer an analysis of the challenges of combining these components into a system that is highly reactive and precise, while still a reliable musical partner, robust to possible performance errors and responsive to expressive variations.