WIDE, IRISA
Abstract:This paper introduces ZIP-DL, a novel privacy-aware decentralized learning (DL) algorithm that relies on adding correlated noise to each model update during the model training process. This technique ensures that the added noise almost neutralizes itself during the aggregation process due to its correlation, thus minimizing the impact on model accuracy. In addition, ZIP-DL does not require multiple communication rounds for noise cancellation, addressing the common trade-off between privacy protection and communication overhead. We provide theoretical guarantees for both convergence speed and privacy guarantees, thereby making ZIP-DL applicable to practical scenarios. Our extensive experimental study shows that ZIP-DL achieves the best trade-off between vulnerability and accuracy. In particular, ZIP-DL (i) reduces the effectiveness of a linkability attack by up to 52 points compared to baseline DL, and (ii) achieves up to 37 more accuracy points for the same vulnerability under membership inference attacks against a privacy-preserving competitor
Abstract:During the last decade, Machine Learning (ML) has increasingly become a hot topic in the field of Computer Networks and is expected to be gradually adopted for a plethora of control, monitoring and management tasks in real-world deployments. This poses the need to count on new generations of students, researchers and practitioners with a solid background in ML applied to networks. During 2020, the International Telecommunication Union (ITU) has organized the "ITU AI/ML in 5G challenge'', an open global competition that has introduced to a broad audience some of the current main challenges in ML for networks. This large-scale initiative has gathered 23 different challenges proposed by network operators, equipment manufacturers and academia, and has attracted a total of 1300+ participants from 60+ countries. This paper narrates our experience organizing one of the proposed challenges: the "Graph Neural Networking Challenge 2020''. We describe the problem presented to participants, the tools and resources provided, some organization aspects and participation statistics, an outline of the top-3 awarded solutions, and a summary with some lessons learned during all this journey. As a result, this challenge leaves a curated set of educational resources openly available to anyone interested in the topic.
Abstract:K-Nearest-Neighbors (KNN) graphs are central to many emblematic data mining and machine-learning applications. Some of the most efficient KNN graph algorithms are incremental and local: they start from a random graph, which they incrementally improve by traversing neighbors-of-neighbors links. Paradoxically, this random start is also one of the key weaknesses of these algorithms: nodes are initially connected to dissimilar neighbors, that lie far away according to the similarity metric. As a result, incremental algorithms must first laboriously explore spurious potential neighbors before they can identify similar nodes, and start converging. In this paper, we remove this drawback with Cluster-and-Conquer (C 2 for short). Cluster-and-Conquer boosts the starting configuration of greedy algorithms thanks to a novel lightweight clustering mechanism, dubbed FastRandomHash. FastRandomHash leverages random-ness and recursion to pre-cluster similar nodes at a very low cost. Our extensive evaluation on real datasets shows that Cluster-and-Conquer significantly outperforms existing approaches, including LSH, yielding speed-ups of up to x4.42 while incurring only a negligible loss in terms of KNN quality.
Abstract:Mass surveillance of the population by state agencies and corporate parties is now a well-known fact. Journalists and whistle-blowers still lack means to circumvent global spying for the sake of their investigations. With Spores, we propose a way for journalists and their sources to plan a posteriori file exchanges when they physically meet. We leverage on the multiplication of personal devices per capita to provide a lightweight, robust and fully anonymous decentralised file transfer protocol between users. Spores hinges on our novel concept of e-squads: one's personal devices, rendered intelligent by gossip communication protocols, can provide private and dependable services to their user. People's e-squads are federated into a novel onion routing network, able to withstand the inherent unreliability of personal appliances while providing reliable routing. Spores' performances are competitive, and its privacy properties of the communication outperform state of the art onion routing strategies.
Abstract:Diagnosing problems in Internet-scale services remains particularly difficult and costly for both content providers and ISPs. Because the Internet is decentralized, the cause of such problems might lie anywhere between an end-user's device and the service datacenters. Further, the set of possible problems and causes is not known in advance, making it impossible in practice to train a classifier with all combinations of problems, causes and locations. In this paper, we explore how different machine learning techniques can be used for Internet-scale root cause analysis using measurements taken from end-user devices. We show how to build generic models that (i) are agnostic to the underlying network topology, (ii) do not require to define the full set of possible causes during training, and (iii) can be quickly adapted to diagnose new services. Our solution, DiagNet, adapts concepts from image processing research to handle network and system metrics. We evaluate DiagNet with a multi-cloud deployment of online services with injected faults and emulated clients with automated browsers. We demonstrate promising root cause analysis capabilities, with a recall of 73.9% including causes only being introduced at inference time.