Abstract:Revision is a crucial step in scientific writing, where authors refine their work to improve clarity, structure, and academic quality. Existing approaches to automated writing assistance often focus on sentence-level revisions, which fail to capture the broader context needed for effective modification. In this paper, we explore the impact of shifting from sentence-level to paragraph-level scope for the task of scientific text revision. The paragraph level definition of the task allows for more meaningful changes, and is guided by detailed revision instructions rather than general ones. To support this task, we introduce ParaRev, the first dataset of revised scientific paragraphs with an evaluation subset manually annotated with revision instructions. Our experiments demonstrate that using detailed instructions significantly improves the quality of automated revisions compared to general approaches, no matter the model or the metric considered.
Abstract:State-of-the-art models for keyphrase generation require large amounts of training data to achieve good performance. However, obtaining keyphrase-labeled documents can be challenging and costly. To address this issue, we present a self-compositional data augmentation method. More specifically, we measure the relatedness of training documents based on their shared keyphrases, and combine similar documents to generate synthetic samples. The advantage of our method lies in its ability to create additional training samples that keep domain coherence, without relying on external data or resources. Our results on multiple datasets spanning three different domains, demonstrate that our method consistently improves keyphrase generation. A qualitative analysis of the generated keyphrases for the Computer Science domain confirms this improvement towards their representativity property.
Abstract:Most existing multi-hop datasets are extractive answer datasets, where the answers to the questions can be extracted directly from the provided context. This often leads models to use heuristics or shortcuts instead of performing true multi-hop reasoning. In this paper, we propose a new multi-hop dataset, MoreHopQA, which shifts from extractive to generative answers. Our dataset is created by utilizing three existing multi-hop datasets: HotpotQA, 2WikiMultihopQA, and MuSiQue. Instead of relying solely on factual reasoning, we enhance the existing multi-hop questions by adding another layer of questioning that involves one, two, or all three of the following types of reasoning: commonsense, arithmetic, and symbolic. Our dataset is created through a semi-automated process, resulting in a dataset with 1,118 samples that have undergone human verification. We then use our dataset to evaluate five different large language models: Mistral 7B, Gemma 7B, Llama 3 (8B and 70B), and GPT-4. We also design various cases to analyze the reasoning steps in the question-answering process. Our results show that models perform well on initial multi-hop questions but struggle with our extended questions, indicating that our dataset is more challenging than previous ones. Our analysis of question decomposition reveals that although models can correctly answer questions, only a portion - 38.7% for GPT-4 and 33.4% for Llama3-70B - achieve perfect reasoning, where all corresponding sub-questions are answered correctly. Evaluation code and data are available at https://github.com/Alab-NII/morehopqa
Abstract:Writing a scientific article is a challenging task as it is a highly codified and specific genre, consequently proficiency in written communication is essential for effectively conveying research findings and ideas. In this article, we propose an original textual resource on the revision step of the writing process of scientific articles. This new dataset, called CASIMIR, contains the multiple revised versions of 15,646 scientific articles from OpenReview, along with their peer reviews. Pairs of consecutive versions of an article are aligned at sentence-level while keeping paragraph location information as metadata for supporting future revision studies at the discourse level. Each pair of revised sentences is enriched with automatically extracted edits and associated revision intention. To assess the initial quality on the dataset, we conducted a qualitative study of several state-of-the-art text revision approaches and compared various evaluation metrics. Our experiments led us to question the relevance of the current evaluation methods for the text revision task.
Abstract:The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.
Abstract:Writing a scientific article is a challenging task as it is a highly codified genre. Good writing skills are essential to properly convey ideas and results of research work. Since the majority of scientific articles are currently written in English, this exercise is all the more difficult for non-native English speakers as they additionally have to face language issues. This article aims to provide an overview of text revision in writing assistance in the scientific domain. We will examine the specificities of scientific writing, including the format and conventions commonly used in research articles. Additionally, this overview will explore the various types of writing assistance tools available for text revision. Despite the evolution of the technology behind these tools through the years, from rule-based approaches to deep neural-based ones, challenges still exist (tools' accessibility, limited consideration of the context, inexplicit use of discursive information, etc.)
Abstract:Keyphrase generation is the task consisting in generating a set of words or phrases that highlight the main topics of a document. There are few datasets for keyphrase generation in the biomedical domain and they do not meet the expectations in terms of size for training generative models. In this paper, we introduce kp-biomed, the first large-scale biomedical keyphrase generation dataset with more than 5M documents collected from PubMed abstracts. We train and release several generative models and conduct a series of experiments showing that using large scale datasets improves significantly the performances for present and absent keyphrase generation. The dataset is available under CC-BY-NC v4.0 license at https://huggingface.co/ datasets/taln-ls2n/kpbiomed.
Abstract:Citation recommendation is intended to assist researchers in the process of searching for relevant papers to cite by recommending appropriate citations for a given input text. Existing test collections for this task are noisy and unreliable since they are built automatically from parsed PDF papers. In this paper, we present our ongoing effort at creating a publicly available, manually annotated test collection for citation recommendation. We also conduct a series of experiments to evaluate the effectiveness of content-based baseline models on the test collection, providing results for future work to improve upon. Our test collection and code to replicate experiments are available at https://github.com/boudinfl/acm-cr
Abstract:Scientific digital libraries play a critical role in the development and dissemination of scientific literature. Despite dedicated search engines, retrieving relevant publications from the ever-growing body of scientific literature remains challenging and time-consuming. Indexing scientific articles is indeed a difficult matter, and current models solely rely on a small portion of the articles (title and abstract) and on author-assigned keyphrases when available. This results in a frustratingly limited access to scientific knowledge. The goal of the DELICES project is to address this pitfall by exploiting semantic relations between scientific articles to both improve and enrich indexing. To this end, we will rely on the latest advances in semantic representations to both increase the relevance of keyphrases extracted from the documents, and extend indexing to new terms borrowed from semantically similar documents.
Abstract:Sequence-to-sequence models have lead to significant progress in keyphrase generation, but it remains unknown whether they are reliable enough to be beneficial for document retrieval. This study provides empirical evidence that such models can significantly improve retrieval performance, and introduces a new extrinsic evaluation framework that allows for a better understanding of the limitations of keyphrase generation models. Using this framework, we point out and discuss the difficulties encountered with supplementing documents with -- not present in text -- keyphrases, and generalizing models across domains. Our code is available at https://github.com/boudinfl/ir-using-kg