Abstract:Multipath-based simultaneous localization and mapping (MP-SLAM) is a promising approach in wireless networks to jointly obtain position information of transmitters/receivers and information of the propagation environment. MP-SLAM models specular reflections at flat surfaces as virtual anchors (VAs), which are mirror images of base stations (BSs). Particlebased methods offer high flexibility and can approximate posterior probability density functions (PDFs) with complex shapes. However, they often require a large number of particles to counteract degeneracy in high-dimensional parameter spaces, leading to high runtimes. Conversely using too few particles leads to reduced estimation accuracy. In this paper, we propose a low-complexity algorithm for MP-SLAM in MIMO systems that employs sigma point (SP) approximations via the sum-product algorithm (SPA). Specifically, we use Gaussian approximations through SP-transformations, drastically reducing computational overhead without sacrificing accuracy. Nonlinearities are handled by SP updates, and moment matching approximates the Gaussian mixtures arising from probabilistic data association (PDA). Numerical results show that our method achieves considerably shorter runtimes than particle-based schemes, with comparable or even superior performance.
Abstract:In this paper, we propose a direct multiobject tracking (MOT) approach for MIMO-radar signals that operates on raw sensor data via variational message passing (VMP). Unlike classical track-before-detect (TBD) methods, which often rely on simplified likelihood models and exclude nuisance parameters (e.g., object amplitudes, noise variance), our method adopts a superimposed signal model and employs a mean-field approximation to jointly estimate both object existence and object states. By considering correlations within in the radar signal due to closely spaced objects and jointly estimating nuisance parameters, the proposed method achieves robust performance for close-by objects and in low-signal-to-noise ratio (SNR) regimes. Our numerical evaluation based on MIMO-radar signals demonstrate that our VMP-based direct-MOT method outperforms a detect-then-track (DTT) pipeline comprising a super-resolution sparse Bayesian learning (SBL)-based estimation stage followed by classical MOT using global nearest neighbour data association and a Kalman filter.
Abstract:We propose an sparse Bayesian learning (SBL)-based method that leverages group sparsity and multiple parameterized dictionaries to detect the relevant dictionary entries and estimate their continuous parameters by combining data from multiple independent sensors. In a MIMO multi-radar setup, we demonstrate its effectiveness in jointly detecting and localizing multiple objects, while also emphasizing its broader applicability to various signal processing tasks. A key benefit of the proposed SBL-based method is its ability to resolve correlated dictionary entries-such as closely spaced objects-resulting in uncorrelated estimates that improve subsequent estimation stages. Through numerical simulations, we show that our method outperforms the newtonized orthogonal matching pursuit (NOMP) algorithm when two objects cross paths using a single radar. Furthermore, we illustrate how fusing measurements from multiple independent radars leads to enhanced detection and localization performance
Abstract:In future wireless networks, the availability of information on the position of mobile agents and the propagation environment can enable new services and increase the throughput and robustness of communications. Multipath-based simultaneous localization and mapping (SLAM) aims at estimating the position of agents and reflecting features in the environment by exploiting the relationship between the local geometry and multipath components (MPCs) in received radio signals. Existing multipath-based SLAM methods preprocess received radio signals using a channel estimator. The channel estimator lowers the data rate by extracting a set of dispersion parameters for each MPC. These parameters are then used as measurements for SLAM. Bayesian estimation for multipath-based SLAM is facilitated by the lower data rate. However, due to finite resolution capabilities limited by signal bandwidth, channel estimation is prone to errors and MPC parameters may be extracted incorrectly and lead to a reduced SLAM performance. We propose a multipath-based SLAM approach that directly uses received radio signals as inputs. A new statistical model that can effectively be represented by a factor graph is introduced. The factor graph is the starting point for the development of an efficient belief propagation (BP) method for multipath-based SLAM that avoids data preprocessing by a channel estimator. Numerical results based on synthetic and real data in challenging single-input, single-output (SISO) scenarios demonstrate that the proposed method outperforms conventional methods in terms of localization and mapping accuracy.
Abstract:Algorithms for joint mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous wave (FMCW) radar. The underlying signal model poses a challenge for signal separation, since both the coherent radar echo and the non-coherent interference influenced by individual multipath propagation channels must be considered. In particular, under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric chirp envelopes in the case of interference. In this paper, we introduce a method inspired by sparse Bayesian learning (SBL) to detect and estimate radar object parameters while also estimating and successively canceling the interference signal. An augmented probabilistic model is employed that uses hierarchical Gamma-Gaussian prior model for each multipath channel separately. Based on this model an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.
Abstract:Multipath-based simultaneous localization and mapping (MP-SLAM) is a promising approach in wireless networks for obtaining position information of transmitters and receivers as well as information on the propagation environment. MP-SLAM models specular reflections of radio frequency (RF) signals at flat surfaces as virtual anchors (VAs), the mirror images of base stations (BSs). Conventional methods for MP-SLAM consider a single mobile terminal (MT) which has to be localized. The availability of additional MTs paves the way for utilizing additional information in the scenario. Specifically enabling MTs to exchange information allows for data fusion over different observations of VAs made by different MTs. Furthermore, cooperative localization becomes possible in addition to multipath-based localization. Utilizing this additional information enables more robust mapping and higher localization accuracy.
Abstract:Distributed multiple-input multiple-output (D-MIMO) is a promising technology for simultaneous communication and positioning. However, phase synchronization between multiple access points in D-MIMO is challenging, which requires methods that function without the need for phase synchronization. We therefore present a method for D-MIMO that performs direct positioning of a moving device based on the delay-Doppler characteristics of the channel state information (CSI). Our method relies on particle-filter-based Bayesian inference with a state-space model. We use recent measurements from a sub-6 GHz D-MIMO OFDM system in an industrial environment to demonstrate centimeter accuracy under partial line-of-sight (LoS) conditions and decimeter accuracy under full non-LoS.
Abstract:Multipath-based simultaneous localization and mapping (MP-SLAM) is a well established approach to obtain position information of transmitters and receivers as well as information regarding the propagation environments in future multiple input multiple output (MIMO) communication systems. Conventional methods for MP-SLAM consider specular reflections of the radio signals occurring at smooth, flat surfaces, which are modeled by virtual anchors (VAs) that are mirror images of the physical anchors (PAs), with each VA generating a single multipath component (MPC). However, non-ideal reflective surfaces (such as walls covered by shelves or cupboards) cause dispersion effects that violate the VA model and lead to multiple MPCs that are associated to a single VA. In this paper, we introduce a Bayesian particle-based sum-product algorithm (SPA) for MP-SLAM in MIMO communications systems. Our method considers non-ideal reflective surfaces by jointly estimating the parameters of individual dispersion models for each detected surface in delay and angle domain leveraging multiple-measurement-to-feature data association. We demonstrate that the proposed SLAM method can robustly and jointly estimate the positions and dispersion extents of ideal and non-ideal reflective surfaces using numerical simulation.
Abstract:This paper addresses the challenge of achieving reliable and robust positioning of a mobile agent, such as a radio device carried by a person, in scenarios where direct line-of-sight (LOS) links are obstructed or unavailable. The human body is considered as an extended object that scatters, attenuates and blocks the radio signals. We propose a novel particle-based sum-product algorithm (SPA) that fuses active measurements between the agent and anchors with passive measurements from pairs of anchors reflected off the body. We first formulate radio signal models for both active and passive measurements. Then, a joint tracking algorithm that utilizes both active and passive measurements is developed for the extended object. The algorithm exploits the probabilistic data association (PDA) for multiple object-related measurements. The results demonstrate superior accuracy during and after the obstructed line-of-sight (OLOS) situation, outperforming conventional methods that solely rely on active measurements. The proposed joint estimation approach significantly enhances the localization robustness via radio sensing.
Abstract:In this paper, we present a multipath-based simultaneous localization and mapping (SLAM) algorithm that continuously adapts mulitiple map feature (MF) models describing specularly reflected multipath components (MPCs) from flat surfaces and point-scattered MPCs, respectively. We develop a Bayesian model for sequential detection and estimation of interacting MF model parameters, MF states and mobile agent's state including position and orientation. The Bayesian model is represented by a factor graph enabling the use of belief propagation (BP) for efficient computation of the marginal posterior distributions. The algorithm also exploits amplitude information enabling reliable detection of weak MFs associated with MPCs of very low signal-to-noise ratios (SNRs). The performance of the proposed algorithm is evaluated using real millimeter-wave (mmWave) multiple-input-multiple-output (MIMO) measurements with single base station setup. Results demonstrate the excellent localization and mapping performance of the proposed algorithm in challenging dynamic outdoor scenarios.