Abstract:Distributed multiple-input multiple-output (D-MIMO) is a promising technology for simultaneous communication and positioning. However, phase synchronization between multiple access points in D-MIMO is challenging, which requires methods that function without the need for phase synchronization. We therefore present a method for D-MIMO that performs direct positioning of a moving device based on the delay-Doppler characteristics of the channel state information (CSI). Our method relies on particle-filter-based Bayesian inference with a state-space model. We use recent measurements from a sub-6 GHz D-MIMO OFDM system in an industrial environment to demonstrate centimeter accuracy under partial line-of-sight (LoS) conditions and decimeter accuracy under full non-LoS.
Abstract:Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths available in the higher bands have inspired much work regarding sensing in the mmWave and sub-THz bands; however, the sub-6 GHz cellular bands will still be the main provider of wide cellular coverage due to the more favorable propagation conditions. In this paper, we present a measurement system and results of sub-6 GHz distributed MIMO measurements performed in an industrial environment. From the measurements, we evaluated the diversity for both large-scale and small-scale fading and characterized the link reliability. We also analyzed the possibility of multistatic sensing and positioning of users in the environment, with the initial results showing a mean-square error below 20 cm on the estimated position. Further, the results clearly showed that new channel models are needed that are spatially consistent and deal with the nonstationary channel properties among the antennas.
Abstract:The emergence of sixth-generation (6G) networks has spurred the development of novel testbeds, including sub-THz networks, cell-free systems, and 6G simulators. To maximize the benefits of these systems, it is crucial to make the generated data publicly available and easily reusable by others. Although data sharing has become a common practice, a lack of standardization hinders data accessibility and interoperability. In this study, we propose the Dataset Storage Standard (DSS) to address these challenges by facilitating data exchange and enabling convenient processing script creation in a testbed-agnostic manner. DSS supports both experimental and simulated data, allowing researchers to employ the same processing scripts and tools across different datasets. Unlike existing standardization efforts such as SigMF and NI RF Data Recording API, DSS provides a broader scope by accommodating a common definition file for testbeds and is not limited to RF data storage. The dataset format utilizes a hierarchical structure, with a tensor representation for specific experiment scenarios. In summary, DSS offers a comprehensive and flexible framework for enhancing the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) in 6G testbeds, promoting open and efficient data sharing in the research community.
Abstract:This paper deals with propagation and channel modeling for physically large arrays. The focus lies on acquiring a spatially consistent model, which is essential, especially for positioning and sensing applications. Ultra-wideband, synthetic array measurement data have been acquired with large positioning devices to support this research. We present a modified multipath channel model that accounts for a varying visibility of multipath components along a large array. Based on a geometric model of the measurement environment, we analyze the visibility of specular components. We show that, depending on the size of the reflecting surface, geometric visibility and amplitude estimates obtained with a super-resolution channel estimation algorithm show a strong correspondence. Furthermore, we highlight the capabilities of the developed synthetic array measurement system.
Abstract:Geometric environment information aids future distributed radio infrastructures in providing services, such as ultra-reliable communication, positioning, and wireless power transfer (WPT). An a priori known environment model cannot always be assumed in practice. This paper investigates the capabilities of detecting specularly reflecting surfaces in a bistatic multiple-input multiple-output (MIMO) radar setup operating at sub-10 GHz frequencies. While rough surfaces generate diffuse reflections originating from their actual position, flat surfaces act like "mirrors," causing directive reflections that virtually originate "behind" them. Despite these propagation characteristics, we can estimate the locations of flat metal walls from reflections at their surface using synthetic aperture (SA) measurements. The performance gain achievable by exploiting this environment information is analyzed by evaluating WPT capabilities in a geometry-based beamforming setup. We show that it is possible to predict channel state information (CSI) with a geometric channel model. Our geometry-based beamformer suffers an efficiency loss of only 1.1dB compared with a reciprocity-based beamformer given perfect CSI.
Abstract:Massive antenna arrays form physically large apertures with a beam-focusing capability, leading to outstanding wireless power transfer (WPT) efficiency paired with low radiation levels outside the focusing region. However, leveraging these features requires accurate knowledge of the multipath propagation channel and overcoming the (Rayleigh) fading channel present in typical application scenarios. For that, reciprocity-based beamforming is an optimal solution that estimates the actual channel gains from pilot transmissions on the uplink. But this solution is unsuitable for passive backscatter nodes that are not capable of sending any pilots in the initial access phase. Using measured channel data from an extremely large-scale MIMO (XL-MIMO) testbed, we compare geometry-based planar wavefront and spherical wavefront beamformers with a reciprocity-based beamformer, to address this initial access problem. We also show that we can predict specular multipath components (SMCs) based only on geometric environment information. We demonstrate that a transmit power of 1W is sufficient to transfer more than 1mW of power to a device located at a distance of 12.3m when using a (40x25) array at 3.8GHz. The geometry-based beamformer exploiting predicted SMCs suffers a loss of only 2dB compared with perfect channel state information.
Abstract:Radio stripes (RSs) is an emerging technology in beyond 5G and 6G wireless networks to support the deployment of cell-free architectures. In this paper, we investigate the potential use of RSs to enable joint positioning and synchronization in the uplink channel at sub-6 GHz bands. The considered scenario consists of a single-antenna user equipment (UE) that communicates with a network of multiple-antenna RSs distributed over a wide area. The UE is assumed to be unsynchronized to the RSs network, while individual RSs are time- and phase-synchronized. We formulate the problem of joint estimation of position, clock offset, and phase offset of the UE and derive the corresponding maximum-likelihood (ML) estimator, both with and without exploiting carrier phase information. To gain fundamental insights into the achievable performance, we also conduct a Fisher information analysis and inspect the theoretical lower bounds numerically. Simulation results demonstrate that promising positioning and synchronization performance can be obtained in cell-free architectures supported by RSs, revealing at the same time the benefits of carrier phase exploitation through phase-synchronized RSs.
Abstract:Radio frequency (RF) wireless power transfer (WPT) is a promising technology for 6G use cases. It enables a massive, yet sustainable deployment of batteryless energy neutral (EN) devices at unprecedented scale. Recent research on 6G is exploring high operating frequencies up to the THz spectrum, where antenna arrays with large apertures are capable of forming narrow, "laser-like" beams. At sub-10 GHz frequencies, physically large antenna arrays are considered that are operating in the array near field. Transmitting spherical wavefronts, power can be focused in a focal point rather than a beam, which allows for efficient and radiation-safe WPT. We formulate a multipath channel model comprising specular components and diffuse scattering to find the WPT power budget in a realistic indoor scenario. Specular components can be predicted by means of a geometric model. This is used to transmit power via multiple beams simultaneously, increasing the available power budget and expanding the initial access distance. We show that exploiting this "beam diversity" reduces the required fading margin for the initial access to EN devices.