Abstract:Future wireless communication systems are envisioned to support ultra-reliable and low-latency communication (URLLC), which will enable new applications such as compute offloading, wireless real-time control, and reliable monitoring. Distributed multiple-input multiple-output (D-MIMO) is one of the most promising technologies for delivering URLLC. This paper classifies obstruction and derives a channel model from a D-MIMO measurement campaign carried out at a carrier frequency of 3.75 GHz with a bandwidth of 35 MHz using twelve distributed fully coherent dipole antennas in an industrial environment. Channel characteristics are investigated, including statistical measures such as small-scale fading, large-scale fading, delay spread, and transition rates between line-of-sight and obstructed line-of-sight conditions for the different antenna elements, laying the foundations for an accurate channel model for D-MIMO systems in industrial environments. Furthermore, correlations of large-scale fading between antennas, spatial correlation, and tail distributions are included to enable proper evaluations of reliability and rare events. Based on the results, a channel model for D-MIMO in industrial environments is presented together with a recipe for its implementation.
Abstract:Distributed multiple-input multiple-output (D-MIMO) is a promising technology for simultaneous communication and positioning. However, phase synchronization between multiple access points in D-MIMO is challenging, which requires methods that function without the need for phase synchronization. We therefore present a method for D-MIMO that performs direct positioning of a moving device based on the delay-Doppler characteristics of the channel state information (CSI). Our method relies on particle-filter-based Bayesian inference with a state-space model. We use recent measurements from a sub-6 GHz D-MIMO OFDM system in an industrial environment to demonstrate centimeter accuracy under partial line-of-sight (LoS) conditions and decimeter accuracy under full non-LoS.
Abstract:Channel sounding is a vital step in understanding wireless channels for the design and deployment of wireless communication systems. In this paper, we present the design and implementation of a coherent distributed massive MIMO channel sounder operating at 5-6 GHz with a bandwidth of 400 MHz based on the NI USRP X410. Through the integration of transceiver chains and RF switches, the design facilitates the use of a larger number of antennas without significant compromise in dynamic capability. Our current implementation is capable of measuring thousands of antenna combinations within tens of milliseconds. Every radio frequency switch is seamlessly integrated with a 16-element antenna array, making the antennas more practical to be transported and flexibly distributed. In addition, the channel sounder features real-time processing to reduce the data stream to the host computer and increase the signal-to-noise ratio. The design and implementation are verified through two measurements in an indoor laboratory environment. The first measurement entails a single-antenna robot as transmitter and 128 distributed receiving antennas. The second measurement demonstrates a passive sensing scenario with a walking person. We evaluate the results of both measurements using the super-resolution algorithm SAGE. The results demonstrate the great potential of the presented sounding system for providing high-quality radio channel measurements, contributing to high-resolution channel estimation, characterization, and active and passive sensing in realistic and dynamic scenarios.
Abstract:Many concepts for future generations of wireless communication systems use coherent processing of signals from many distributed antennas. The aim is to improve communication reliability, capacity, and energy efficiency and provide possibilities for new applications through integrated communication and sensing. The large bandwidths available in the higher bands have inspired much work regarding sensing in the mmWave and sub-THz bands; however, the sub-6 GHz cellular bands will still be the main provider of wide cellular coverage due to the more favorable propagation conditions. In this paper, we present a measurement system and results of sub-6 GHz distributed MIMO measurements performed in an industrial environment. From the measurements, we evaluated the diversity for both large-scale and small-scale fading and characterized the link reliability. We also analyzed the possibility of multistatic sensing and positioning of users in the environment, with the initial results showing a mean-square error below 20 cm on the estimated position. Further, the results clearly showed that new channel models are needed that are spatially consistent and deal with the nonstationary channel properties among the antennas.
Abstract:The emergence of sixth-generation (6G) networks has spurred the development of novel testbeds, including sub-THz networks, cell-free systems, and 6G simulators. To maximize the benefits of these systems, it is crucial to make the generated data publicly available and easily reusable by others. Although data sharing has become a common practice, a lack of standardization hinders data accessibility and interoperability. In this study, we propose the Dataset Storage Standard (DSS) to address these challenges by facilitating data exchange and enabling convenient processing script creation in a testbed-agnostic manner. DSS supports both experimental and simulated data, allowing researchers to employ the same processing scripts and tools across different datasets. Unlike existing standardization efforts such as SigMF and NI RF Data Recording API, DSS provides a broader scope by accommodating a common definition file for testbeds and is not limited to RF data storage. The dataset format utilizes a hierarchical structure, with a tensor representation for specific experiment scenarios. In summary, DSS offers a comprehensive and flexible framework for enhancing the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) in 6G testbeds, promoting open and efficient data sharing in the research community.
Abstract:This paper deals with propagation and channel modeling for physically large arrays. The focus lies on acquiring a spatially consistent model, which is essential, especially for positioning and sensing applications. Ultra-wideband, synthetic array measurement data have been acquired with large positioning devices to support this research. We present a modified multipath channel model that accounts for a varying visibility of multipath components along a large array. Based on a geometric model of the measurement environment, we analyze the visibility of specular components. We show that, depending on the size of the reflecting surface, geometric visibility and amplitude estimates obtained with a super-resolution channel estimation algorithm show a strong correspondence. Furthermore, we highlight the capabilities of the developed synthetic array measurement system.
Abstract:Multiple concepts for future generations of wireless communication standards utilize coherent processing of signals from many distributed antennas. Names for these concepts include distributed MIMO, cell-free massive MIMO, XL-MIMO, and large intelligent surfaces. They aim to improve communication reliability, capacity, as well as energy efficiency and provide possibilities for new applications through joint communication and sensing. One such recently proposed solution is the concept of RadioWeaves. It proposes a new radio infrastructure for distributed MIMO with distributed internal processing, storage, and compute resources integrated into the infrastructure. The large bandwidths available in the higher bands have inspired much work regarding sensing in the mmWave- and sub-THz-bands, however, sub-6 GHz cellular bands will still be the main provider of broad cellular coverage due to the more favorable propagation conditions. In this paper, we present results from a sub-6 GHz measurement campaign targeting the non-stationary spatial channel statistics for a large RadioWeave and the temporal non-stationarity in a dynamic scenario with RadioWeaves. From the results, we also predict the possibility of multi-static sensing and positioning of users in the environment.