Universitat Autonoma de Barcelona
Abstract:Distributed massive multiple-input multiple-output networks utilize a large number of distributed access points (APs) to serve multiple user equipments (UEs), offering significant potential for both communication and localization. However, these networks require frequent phase and time calibration between distributed antennas due to oscillator phase drifts, crucial for reciprocity-based coherent beamforming and accurate localization. While this calibration is typically performed through bi-directional measurements between antennas, it can be simplified to unidirectional measurement under perfect knowledge of antenna locations. This paper extends a recent phase calibration narrowband line-of-sight (LoS) model to a phase and time calibration wideband orthogonal frequency division multiplexing model, including both LoS and reflection paths and allowing for joint phase and time calibrations. We explore different scenarios, considering whether or not prior knowledge of antenna locations and the map is available. For each case, we introduce a practical maximum likelihood estimator and conduct Cramer-Rao lower bound (CRLB) analyses to benchmark performance. Simulations validate our estimators against the CRLB in these scenarios.
Abstract:6G networks aim to enable applications like autonomous driving by providing complementary localization services through key technologies such as non-terrestrial networks (NTNs) with low Earth orbit (LEO) satellites and reconfigurable intelligent surfaces (RIS). Prior research in 6G localization using single LEO, multi-LEO, and multi-LEO multi-RIS setups has limitations: single LEO lacks the required accuracy, while multi-LEO/RIS setups demand many visible satellites and RISs, which is not always feasible in practice. This paper explores the novel problem of localization with a single LEO satellite and a single RIS, bridging these research areas. We present a comprehensive signal model accounting for user carrier frequency offset (CFO), clock bias, and fast and slow Doppler effects. Additionally, we derive a low-complexity estimator that achieves theoretical bounds at high signal-to-noise ratios (SNR). Our results demonstrate the feasibility and accuracy of RIS-aided single-LEO localization in 6G networks and highlight potential research directions.
Abstract:In this paper, we investigate 3-D localization and frequency synchronization with multiple reconfigurable intelligent surfaces (RISs) in the presence of carrier frequency offset (CFO) for a stationary user equipment (UE). In line with the 6G goals of sustainability and efficiency, we focus on a frugal communication scenario with minimal spatial and spectral resources (i.e., narrowband single-input single-ouput system), considering both the presence and blockage of the line-of-sight (LoS) path between the base station (BS) and the UE. We design a generalized likelihood ratio test (GLRT)-based LoS detector, channel parameter estimation and localization algorithms, with varying complexity. To verify the efficiency of our estimators, we compare the root mean-squared error (RMSE) to the Cram\'er- Rao bound (CRB) of the unknown parameters. We also evaluate the sensitivity of our algorithms to the presence of uncontrolled multi-path components (MPC) and various levels of CFO. Simulation results showcase the effectiveness of the proposed algorithms under minimal hardware and spectral requirements, and a wide range of operating conditions, thereby confirming the viability of RIS-aided frugal localization in 6G scenarios.
Abstract:Ensuring positioning integrity amid faulty measurements is crucial for safety-critical applications, making receiver autonomous integrity monitoring (RAIM) indispensable. This paper introduces a Bayesian RAIM algorithm with a streamlined architecture for snapshot-type 3D cellular positioning. Unlike traditional frequentist-type RAIM algorithms, it computes the exact posterior probability density function (PDF) of the position vector as a Gaussian mixture (GM) model using efficient message passing along a factor graph. This Bayesian approach retains all crucial information from the measurements, eliminates the need to discard faulty measurements, and results in tighter protection levels (PLs) in 3D space and 1D/2D subspaces that meet target integrity risk (TIR) requirements. Numerical simulations demonstrate that the Bayesian RAIM algorithm significantly outperforms a baseline algorithm, achieving over $50\%$ PL reduction at a comparable computational cost.
Abstract:Galileo is the first global navigation satellite system to authenticate their civilian signals through the Open Service Galileo Message Authentication (OSNMA) protocol. However, OSNMA delays the time to obtain a first position and time fix, the so-called Time To First Authentication Fix (TTFAF). Reducing the TTFAF as much as possible is crucial to integrate the technology seamlessly into the current products. In the cases where the receiver already has cryptographic data available, the so-called hot start mode and focus of this article, the currently available implementations achieve an average TTFAF of around 100 seconds in ideal environments. In this work, we dissect the TTFAF process, propose two main optimizations to reduce the TTFAF, and benchmark them in three distinct scenarios (open-sky, soft urban, and hard urban) with recorded real data. Moreover, we evaluate the optimizations using the synthetic scenario from the official OSNMA test vectors. The first block of optimizations centers on extracting as much information as possible from broken sub-frames by processing them at page level and combining redundant data from multiple satellites. The second block of optimizations aims to reconstruct missed navigation data by using fields in the authentication tags belonging to the same sub-frame as the authentication key. Combining both optimizations improves the TTFAF substantially for all considered scenarios. We obtain an average TTFAF of 60.9 and 68.8 seconds for the test vectors and the open-sky scenario, respectively, with a best-case of 44.0 seconds in both. Likewise, the urban scenarios see a drastic reduction of the average TTFAF between the non-optimized and optimized cases, from 127.5 to 87.5 seconds in the soft urban scenario and from 266.1 to 146.1 seconds in the hard urban scenario. These optimizations are available as part of the open-source OSNMAlib library on GitHub.
Abstract:The contemporary landscape of wireless technology underscores the critical role of precise localization services. Traditional global navigation satellite systems (GNSS)-based solutions, however, fall short when it comes to indoor environments, and existing indoor localization techniques such as electromagnetic fingerprinting methods face challenges of high implementation costs and limited coverage. This article explores an innovative solution that seamlessly blends low Earth orbit (LEO) satellites with reconfigurable intelligent surfaces (RISs), unlocking its potential for realizing uninterrupted indoor and outdoor localization with global coverage. By leveraging the strong signal reception of the LEO satellite signals and capitalizing on the radio environment-reshaping capability of RISs, the integration of these two technologies presents a vision of a future where localization services transcend existing constraints. After a comprehensive review of the distinctive attributes of LEO satellites and RISs, we evaluate the localization error bounds for the proposed collaborative system, showcasing their promising performance on simultaneous indoor and outdoor localization. To conclude, we engage in a discussion on open problems and future research directions for LEO satellite and RIS-enabled localization.
Abstract:Reconfigurable intelligent surfaces (RISs) are considered as an enabling technology for the upcoming sixth generation of wireless systems, exhibiting significant potential for radio localization and sensing. An RIS is usually treated as an anchor point with known position and orientation when deployed to offer user localization. However, it can also be attached to a user to enable its localization in a semi-passive manner. In this paper, we consider a static user equipped with an RIS and study the RIS localization problem (i.e., joint three-dimensional position and orientation estimation), when operating in a system comprising a single-antenna transmitter and multiple synchronized single-antenna receivers with known locations. We present a multi-stage estimator using time-of-arrival and spatial frequency measurements, and derive the Cram\'er-Rao lower bounds for the estimated parameters to validate the estimator's performance. Our simulation results demonstrate the efficiency of the proposed RIS state estimation approach under various system operation parameters.
Abstract:The carrier phase of cellular signals can be utilized for highly accurate positioning, with the potential for orders-of-magnitude performance improvements compared to standard time-difference-of-arrival positioning. Due to the integer ambiguities, standard performance evaluation tools such as the Cram\'er-Rao bound (CRB) are overly optimistic. In this paper, a new performance bound, called the mixed-integer CRB (MICRB) is introduced that explicitly accounts for this integer ambiguity. While computationally more complex than the standard CRB, the MICRB can accurately predict positioning performance, as verified by numerical simulations.
Abstract:Radio stripes (RSs) is an emerging technology in beyond 5G and 6G wireless networks to support the deployment of cell-free architectures. In this paper, we investigate the potential use of RSs to enable joint positioning and synchronization in the uplink channel at sub-6 GHz bands. The considered scenario consists of a single-antenna user equipment (UE) that communicates with a network of multiple-antenna RSs distributed over a wide area. The UE is assumed to be unsynchronized to the RSs network, while individual RSs are time- and phase-synchronized. We formulate the problem of joint estimation of position, clock offset, and phase offset of the UE and derive the corresponding maximum-likelihood (ML) estimator, both with and without exploiting carrier phase information. To gain fundamental insights into the achievable performance, we also conduct a Fisher information analysis and inspect the theoretical lower bounds numerically. Simulation results demonstrate that promising positioning and synchronization performance can be obtained in cell-free architectures supported by RSs, revealing at the same time the benefits of carrier phase exploitation through phase-synchronized RSs.
Abstract:A smart city involves, among other elements, intelligent transportation, crowd monitoring, and digital twins, each of which requires information exchange via wireless communication links and localization of connected devices and passive objects (including people). Although localization and sensing (L&S) are envisioned as core functions of future communication systems, they have inherently different demands in terms of infrastructure compared to communications. Wireless communications generally requires a connection to only a single access point (AP), while L&S demand simultaneous line-of-sight propagation paths to several APs, which serve as location and orientation anchors. Hence, a smart city deployment optimized for communication will be insufficient to meet stringent L&S requirements. In this article, we argue that the emerging technologies of reconfigurable intelligent surfaces (RISs) and sidelink communications constitute the key to providing ubiquitous coverage for L&S in smart cities with low-cost and energy-efficient technical solutions. To this end, we propose and evaluate AP-coordinated and self-coordinated RIS-enabled L&S architectures and detail three groups of application scenarios, relying on low-complexity beacons, cooperative localization, and full-duplex transceivers. A list of practical issues and consequent open research challenges of the proposed L&S systems is also provided.