Abstract:Backdoor attacks are commonly executed by contaminating training data, such that a trigger can activate predetermined harmful effects during the test phase. In this work, we present AnyDoor, a test-time backdoor attack against multimodal large language models (MLLMs), which involves injecting the backdoor into the textual modality using adversarial test images (sharing the same universal perturbation), without requiring access to or modification of the training data. AnyDoor employs similar techniques used in universal adversarial attacks, but distinguishes itself by its ability to decouple the timing of setup and activation of harmful effects. In our experiments, we validate the effectiveness of AnyDoor against popular MLLMs such as LLaVA-1.5, MiniGPT-4, InstructBLIP, and BLIP-2, as well as provide comprehensive ablation studies. Notably, because the backdoor is injected by a universal perturbation, AnyDoor can dynamically change its backdoor trigger prompts/harmful effects, exposing a new challenge for defending against backdoor attacks. Our project page is available at https://sail-sg.github.io/AnyDoor/.
Abstract:Vision-language pre-training (VLP) models have shown vulnerability to adversarial examples in multimodal tasks. Furthermore, malicious adversaries can be deliberately transferred to attack other black-box models. However, existing work has mainly focused on investigating white-box attacks. In this paper, we present the first study to investigate the adversarial transferability of recent VLP models. We observe that existing methods exhibit much lower transferability, compared to the strong attack performance in white-box settings. The transferability degradation is partly caused by the under-utilization of cross-modal interactions. Particularly, unlike unimodal learning, VLP models rely heavily on cross-modal interactions and the multimodal alignments are many-to-many, e.g., an image can be described in various natural languages. To this end, we propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance. Experimental results demonstrate that SGA could generate adversarial examples that can strongly transfer across different VLP models on multiple downstream vision-language tasks. On image-text retrieval, SGA significantly enhances the attack success rate for transfer attacks from ALBEF to TCL by a large margin (at least 9.78% and up to 30.21%), compared to the state-of-the-art.
Abstract:Online abusive language detection (ALD) has become a societal issue of increasing importance in recent years. Several previous works in online ALD focused on solving a single abusive language problem in a single domain, like Twitter, and have not been successfully transferable to the general ALD task or domain. In this paper, we introduce a new generic ALD framework, MACAS, which is capable of addressing several types of ALD tasks across different domains. Our generic framework covers multi-aspect abusive language embeddings that represent the target and content aspects of abusive language and applies a textual graph embedding that analyses the user's linguistic behaviour. Then, we propose and use the cross-attention gate flow mechanism to embrace multiple aspects of abusive language. Quantitative and qualitative evaluation results show that our ALD algorithm rivals or exceeds the six state-of-the-art ALD algorithms across seven ALD datasets covering multiple aspects of abusive language and different online community domains.