Abstract:Data collection for forestry, timber, and agriculture currently relies on manual techniques which are labor-intensive and time-consuming. We seek to demonstrate that robotics offers improvements over these techniques and accelerate agricultural research, beginning with semantic segmentation and diameter estimation of trees in forests and orchards. We present TreeScope v1.0, the first robotics dataset for precision agriculture and forestry addressing the counting and mapping of trees in forestry and orchards. TreeScope provides LiDAR data from agricultural environments collected with robotics platforms, such as UAV and mobile robot platforms carried by vehicles and human operators. In the first release of this dataset, we provide ground-truth data with over 1,800 manually annotated semantic labels for tree stems and field-measured tree diameters. We share benchmark scripts for these tasks that researchers may use to evaluate the accuracy of their algorithms. Finally, we run our open-source diameter estimation and off-the-shelf semantic segmentation algorithms and share our baseline results.
Abstract:We explore the feasibility of using triplet neural networks to embed songs based on content-based music similarity. Our network is trained using triplets of songs such that two songs by the same artist are embedded closer to one another than to a third song by a different artist. We compare two models that are trained using different ways of picking this third song: at random vs. based on shared genre labels. Our experiments are conducted using songs from the Free Music Archive and use standard audio features. The initial results show that shallow Siamese networks can be used to embed music for a simple artist retrieval task.