Abstract:This paper presents MEMROC (Multi-Eye to Mobile RObot Calibration), a novel motion-based calibration method that simplifies the process of accurately calibrating multiple cameras relative to a mobile robot's reference frame. MEMROC utilizes a known calibration pattern to facilitate accurate calibration with a lower number of images during the optimization process. Additionally, it leverages robust ground plane detection for comprehensive 6-DoF extrinsic calibration, overcoming a critical limitation of many existing methods that struggle to estimate the complete camera pose. The proposed method addresses the need for frequent recalibration in dynamic environments, where cameras may shift slightly or alter their positions due to daily usage, operational adjustments, or vibrations from mobile robot movements. MEMROC exhibits remarkable robustness to noisy odometry data, requiring minimal calibration input data. This combination makes it highly suitable for daily operations involving mobile robots. A comprehensive set of experiments on both synthetic and real data proves MEMROC's efficiency, surpassing existing state-of-the-art methods in terms of accuracy, robustness, and ease of use. To facilitate further research, we have made our code publicly available at https://github.com/davidea97/MEMROC.git.
Abstract:Out-of-Distribution (OOD) detection in computer vision is a crucial research area, with related benchmarks playing a vital role in assessing the generalizability of models and their applicability in real-world scenarios. However, existing OOD benchmarks in the literature suffer from two main limitations: (1) they often overlook semantic shift as a potential challenge, and (2) their scale is limited compared to the large datasets used to train modern models. To address these gaps, we introduce SOOD-ImageNet, a novel dataset comprising around 1.6M images across 56 classes, designed for common computer vision tasks such as image classification and semantic segmentation under OOD conditions, with a particular focus on the issue of semantic shift. We ensured the necessary scalability and quality by developing an innovative data engine that leverages the capabilities of modern vision-language models, complemented by accurate human checks. Through extensive training and evaluation of various models on SOOD-ImageNet, we showcase its potential to significantly advance OOD research in computer vision. The project page is available at https://github.com/bach05/SOODImageNet.git.
Abstract:Robust 3D human pose estimation is crucial to ensure safe and effective human-robot collaboration. Accurate human perception,however, is particularly challenging in these scenarios due to strong occlusions and limited camera viewpoints. Current 3D human pose estimation approaches are rather vulnerable in such conditions. In this work we present a novel approach for robust 3D human pose estimation in the context of human-robot collaboration. Instead of relying on noisy 2D features triangulation, we perform multi-view fusion on 3D skeletons provided by absolute monocular methods. Accurate 3D pose estimation is then obtained via reprojection error optimization, introducing limbs length symmetry constraints. We evaluate our approach on the public dataset Human3.6M and on a novel version Human3.6M-Occluded, derived adding synthetic occlusions on the camera views with the purpose of testing pose estimation algorithms under severe occlusions. We further validate our method on real human-robot collaboration workcells, in which we strongly surpass current 3D human pose estimation methods. Our approach outperforms state-of-the-art multi-view human pose estimation techniques and demonstrates superior capabilities in handling challenging scenarios with strong occlusions, representing a reliable and effective solution for real human-robot collaboration setups.
Abstract:In industrial scenarios, effective human-robot collaboration relies on multi-camera systems to robustly monitor human operators despite the occlusions that typically show up in a robotic workcell. In this scenario, precise localization of the person in the robot coordinate system is essential, making the hand-eye calibration of the camera network critical. This process presents significant challenges when high calibration accuracy should be achieved in short time to minimize production downtime, and when dealing with extensive camera networks used for monitoring wide areas, such as industrial robotic workcells. Our paper introduces an innovative and robust multi-camera hand-eye calibration method, designed to optimize each camera's pose relative to both the robot's base and to each other camera. This optimization integrates two types of key constraints: i) a single board-to-end-effector transformation, and ii) the relative camera-to-camera transformations. We demonstrate the superior performance of our method through comprehensive experiments employing the METRIC dataset and real-world data collected on industrial scenarios, showing notable advancements over state-of-the-art techniques even using less than 10 images. Additionally, we release an open-source version of our multi-camera hand-eye calibration algorithm at https://github.com/davidea97/Multi-Camera-Hand-Eye-Calibration.git.
Abstract:Hand-eye calibration is the problem of estimating the spatial transformation between a reference frame, usually the base of a robot arm or its gripper, and the reference frame of one or multiple cameras. Generally, this calibration is solved as a non-linear optimization problem, what instead is rarely done is to exploit the underlying graph structure of the problem itself. Actually, the problem of hand-eye calibration can be seen as an instance of the Simultaneous Localization and Mapping (SLAM) problem. Inspired by this fact, in this work we present a pose-graph approach to the hand-eye calibration problem that extends a recent state-of-the-art solution in two different ways: i) by formulating the solution to eye-on-base setups with one camera; ii) by covering multi-camera robotic setups. The proposed approach has been validated in simulation against standard hand-eye calibration methods. Moreover, a real application is shown. In both scenarios, the proposed approach overcomes all alternative methods. We release with this paper an open-source implementation of our graph-based optimization framework for multi-camera setups.