Abstract:While current research predominantly focuses on image-based colorization, the domain of video-based colorization remains relatively unexplored. Most existing video colorization techniques operate on a frame-by-frame basis, often overlooking the critical aspect of temporal coherence between successive frames. This approach can result in inconsistencies across frames, leading to undesirable effects like flickering or abrupt color transitions between frames. To address these challenges, we harness the generative capabilities of a fine-tuned latent diffusion model designed specifically for video colorization, introducing a novel solution for achieving temporal consistency in video colorization, as well as demonstrating strong improvements on established image quality metrics compared to other existing methods. Furthermore, we perform a subjective study, where users preferred our approach to the existing state of the art. Our dataset encompasses a combination of conventional datasets and videos from television/movies. In short, by leveraging the power of a fine-tuned latent diffusion-based colorization system with a temporal consistency mechanism, we can improve the performance of automatic video colorization by addressing the challenges of temporal inconsistency. A short demonstration of our results can be seen in some example videos available at https://youtu.be/vDbzsZdFuxM.
Abstract:Contemporary Human Computer Interaction (HCI) research relies primarily on neural network models for machine vision and speech understanding of a system user. Such models require extensively annotated training datasets for optimal performance and when building interfaces for users from a vulnerable population such as young children, GDPR introduces significant complexities in data collection, management, and processing. Motivated by the training needs of an Edge AI smart toy platform this research explores the latest advances in generative neural technologies and provides a working proof of concept of a controllable data generation pipeline for speech driven facial training data at scale. In this context, we demonstrate how StyleGAN2 can be finetuned to create a gender balanced dataset of children's faces. This dataset includes a variety of controllable factors such as facial expressions, age variations, facial poses, and even speech-driven animations with realistic lip synchronization. By combining generative text to speech models for child voice synthesis and a 3D landmark based talking heads pipeline, we can generate highly realistic, entirely synthetic, talking child video clips. These video clips can provide valuable, and controllable, synthetic training data for neural network models, bridging the gap when real data is scarce or restricted due to privacy regulations.
Abstract:In this paper we propose a method for end-to-end speech driven video editing using a denoising diffusion model. Given a video of a person speaking, we aim to re-synchronise the lip and jaw motion of the person in response to a separate auditory speech recording without relying on intermediate structural representations such as facial landmarks or a 3D face model. We show this is possible by conditioning a denoising diffusion model with audio spectral features to generate synchronised facial motion. We achieve convincing results on the task of unstructured single-speaker video editing, achieving a word error rate of 45% using an off the shelf lip reading model. We further demonstrate how our approach can be extended to the multi-speaker domain. To our knowledge, this is the first work to explore the feasibility of applying denoising diffusion models to the task of audio-driven video editing.
Abstract:Despite recent advancements in deep learning technologies, Child Speech Recognition remains a challenging task. Current Automatic Speech Recognition (ASR) models required substantial amounts of annotated data for training, which is scarce. In this work, we explore using the ASR model, wav2vec2, with different pretraining and finetuning configurations for self supervised learning (SSL) towards improving automatic child speech recognition. The pretrained wav2vec2 models were finetuned using different amounts of child speech training data to discover the optimum amount of data required to finetune the model for the task of child ASR. Our trained model receives the best word error rate (WER) of 8.37 on the in domain MyST dataset and WER of 10.38 on the out of domain PFSTAR dataset. We do not use any Language Models (LM) in our experiments.
Abstract:Speech synthesis has come a long way as current text-to-speech (TTS) models can now generate natural human-sounding speech. However, most of the TTS research focuses on using adult speech data and there has been very limited work done on child speech synthesis. This study developed and validated a training pipeline for fine-tuning state-of-the-art (SOTA) neural TTS models using child speech datasets. This approach adopts a multi-speaker TTS retuning workflow to provide a transfer-learning pipeline. A publicly available child speech dataset was cleaned to provide a smaller subset of approximately 19 hours, which formed the basis of our fine-tuning experiments. Both subjective and objective evaluations were performed using a pretrained MOSNet for objective evaluation and a novel subjective framework for mean opinion score (MOS) evaluations. Subjective evaluations achieved the MOS of 3.95 for speech intelligibility, 3.89 for voice naturalness, and 3.96 for voice consistency. Objective evaluation using a pretrained MOSNet showed a strong correlation between real and synthetic child voices. Speaker similarity was also verified by calculating the cosine similarity between the embeddings of utterances. An automatic speech recognition (ASR) model is also used to provide a word error rate (WER) comparison between the real and synthetic child voices. The final trained TTS model was able to synthesize child-like speech from reference audio samples as short as 5 seconds.