Abstract:This paper presents an autonomous method to address challenges arising from severe lighting conditions in machine vision applications that use event cameras. To manage these conditions, the research explores the built in potential of these cameras to adjust pixel functionality, named bias settings. As cars are driven at various times and locations, shifts in lighting conditions are unavoidable. Consequently, this paper utilizes the neuromorphic YOLO-based face tracking module of a driver monitoring system as the event-based application to study. The proposed method uses numerical metrics to continuously monitor the performance of the event-based application in real-time. When the application malfunctions, the system detects this through a drop in the metrics and automatically adjusts the event cameras bias values. The Nelder-Mead simplex algorithm is employed to optimize this adjustment, with finetuning continuing until performance returns to a satisfactory level. The advantage of bias optimization lies in its ability to handle conditions such as flickering or darkness without requiring additional hardware or software. To demonstrate the capabilities of the proposed system, it was tested under conditions where detecting human faces with default bias values was impossible. These severe conditions were simulated using dim ambient light and various flickering frequencies. Following the automatic and dynamic process of bias modification, the metrics for face detection significantly improved under all conditions. Autobiasing resulted in an increase in the YOLO confidence indicators by more than 33 percent for object detection and 37 percent for face detection highlighting the effectiveness of the proposed method.
Abstract:Adding color to black-and-white speaker videos automatically is a highly desirable technique. It is an artistic process that requires interactivity with humans for the best results. Many existing automatic video colorization systems provide little opportunity for the user to guide the colorization process. In this work, we introduce a novel automatic speaker video colorization system which provides controllability to the user while also maintaining high colorization quality relative to state-of-the-art techniques. We name this system ControlCol. ControlCol performs 3.5% better than the previous state-of-the-art DeOldify on the Grid and Lombard Grid datasets when PSNR, SSIM, FID and FVD are used as metrics. This result is also supported by our human evaluation, where in a head-to-head comparison, ControlCol is preferred 90% of the time to DeOldify. Example videos can be seen in the supplementary material.
Abstract:This study introduces a novel approach to enhance the spatial-temporal resolution of time-event pixels based on luminance changes captured by event cameras. These cameras present unique challenges due to their low resolution and the sparse, asynchronous nature of the data they collect. Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras, resulting in inefficiencies in capturing the full dynamism and detail of visual scenes with improved computational complexity. To bridge this gap, our research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs), leveraging spatiotemporal constraint learning mechanism designed to simultaneously learn the spatial and temporal distributions of the event stream. The proposed network is evaluated using widely recognized benchmark datasets, including N-MNIST, CIFAR10-DVS, ASL-DVS, and Event-NFS. A comprehensive evaluation framework is employed, assessing both the accuracy, through root mean square error (RMSE), and the computational efficiency of our model. The findings demonstrate significant improvements over existing state-of-the-art methods, specifically, the proposed method outperforms state-of-the-art performance in computational efficiency, achieving a 17.04-fold improvement in event sparsity and a 32.28-fold increase in synaptic operation efficiency over traditional artificial neural networks, alongside a two-fold better performance over spiking neural networks.
Abstract:Event camera-based driver monitoring is emerging as a pivotal area of research, driven by its significant advantages such as rapid response, low latency, power efficiency, enhanced privacy, and prevention of undersampling. Effective detection of driver distraction is crucial in driver monitoring systems to enhance road safety and reduce accident rates. The integration of an optimized sensor such as Event Camera with an optimized network is essential for maximizing these benefits. This paper introduces the innovative concept of sensing without seeing to detect driver distraction, leveraging computationally efficient spiking neural networks (SNN). To the best of our knowledge, this study is the first to utilize event camera data with spiking neural networks for driver distraction. The proposed Spiking-DD network not only achieve state of the art performance but also exhibit fewer parameters and provides greater accuracy than current event-based methodologies.
Abstract:In this research work we have proposed high-level ChildDiffusion framework capable of generating photorealistic child facial samples and further embedding several intelligent augmentations on child facial data using short text prompts, detailed textual guidance from LLMs, and further image to image transformation using text guidance control conditioning thus providing an opportunity to curate fully synthetic large scale child datasets. The framework is validated by rendering high-quality child faces representing ethnicity data, micro expressions, face pose variations, eye blinking effects, facial accessories, different hair colours and styles, aging, multiple and different child gender subjects in a single frame. Addressing privacy concerns regarding child data acquisition requires a comprehensive approach that involves legal, ethical, and technological considerations. Keeping this in view this framework can be adapted to synthesise child facial data which can be effectively used for numerous downstream machine learning tasks. The proposed method circumvents common issues encountered in generative AI tools, such as temporal inconsistency and limited control over the rendered outputs. As an exemplary use case we have open-sourced child ethnicity data consisting of 2.5k child facial samples of five different classes which includes African, Asian, White, South Asian/ Indian, and Hispanic races by deploying the model in production inference phase. The rendered data undergoes rigorous qualitative as well as quantitative tests to cross validate its efficacy and further fine-tuning Yolo architecture for detecting and classifying child ethnicity as an exemplary downstream machine learning task.
Abstract:The ability to accurately recognize an individual's face with respect to human aging factor holds significant importance for various private as well as government sectors such as customs and public security bureaus, passport office, and national database systems. Therefore, developing a robust age-invariant face recognition system is of crucial importance to address the challenges posed by ageing and maintain the reliability and accuracy of facial recognition technology. In this research work, the focus is to explore the feasibility of utilizing synthetic ageing data to improve the robustness of face recognition models that can eventually help in recognizing people at broader age intervals. To achieve this, we first design set of experiments to evaluate state-of-the-art synthetic ageing methods. In the next stage we explore the effect of age intervals on a current deep learning-based face recognition algorithm by using synthetic ageing data as well as real ageing data to perform rigorous training and validation. Moreover, these synthetic age data have been used in facilitating face recognition algorithms. Experimental results show that the recognition rate of the model trained on synthetic ageing images is 3.33% higher than the results of the baseline model when tested on images with an age gap of 40 years, which prove the potential of synthetic age data which has been quantified to enhance the performance of age-invariant face recognition systems.
Abstract:While current research predominantly focuses on image-based colorization, the domain of video-based colorization remains relatively unexplored. Most existing video colorization techniques operate on a frame-by-frame basis, often overlooking the critical aspect of temporal coherence between successive frames. This approach can result in inconsistencies across frames, leading to undesirable effects like flickering or abrupt color transitions between frames. To address these challenges, we harness the generative capabilities of a fine-tuned latent diffusion model designed specifically for video colorization, introducing a novel solution for achieving temporal consistency in video colorization, as well as demonstrating strong improvements on established image quality metrics compared to other existing methods. Furthermore, we perform a subjective study, where users preferred our approach to the existing state of the art. Our dataset encompasses a combination of conventional datasets and videos from television/movies. In short, by leveraging the power of a fine-tuned latent diffusion-based colorization system with a temporal consistency mechanism, we can improve the performance of automatic video colorization by addressing the challenges of temporal inconsistency. A short demonstration of our results can be seen in some example videos available at https://youtu.be/vDbzsZdFuxM.
Abstract:Stable Diffusion (SD) has gained a lot of attention in recent years in the field of Generative AI thus helping in synthesizing medical imaging data with distinct features. The aim is to contribute to the ongoing effort focused on overcoming the limitations of data scarcity and improving the capabilities of ML algorithms for cardiovascular image processing. Therefore, in this study, the possibility of generating synthetic cardiac CTA images was explored by fine-tuning stable diffusion models based on user defined text prompts, using only limited number of CTA images as input. A comprehensive evaluation of the synthetic data was conducted by incorporating both quantitative analysis and qualitative assessment, where a clinician assessed the quality of the generated data. It has been shown that Cardiac CTA images can be successfully generated using using Text to Image (T2I) stable diffusion model. The results demonstrate that the tuned T2I CTA diffusion model was able to generate images with features that are typically unique to acute type B aortic dissection (TBAD) medical conditions.
Abstract:This study explores the utilization of Dermatoscopic synthetic data generated through stable diffusion models as a strategy for enhancing the robustness of machine learning model training. Synthetic data generation plays a pivotal role in mitigating challenges associated with limited labeled datasets, thereby facilitating more effective model training. In this context, we aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning and a small amount of data representation in text-to-image latent diffusion models. The optimally tuned model is further used for rendering high-quality skin lesion synthetic data with diverse and realistic characteristics, providing a valuable supplement and diversity to the existing training data. We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models, assessing its effectiveness in enhancing model performance and generalization to unseen real-world data. Our experimental results demonstrate the efficacy of the synthetic data generated through stable diffusion models helps in improving the robustness and adaptability of end-to-end CNN and vision transformer models on two different real-world skin lesion datasets.
Abstract:An overview is given of the DAVID Smart-Toy platform, one of the first Edge AI platform designs to incorporate advanced low-power data processing by neural inference models co-located with the relevant image or audio sensors. There is also on-board capability for in-device text-to-speech generation. Two alternative embodiments are presented: a smart Teddy-bear, and a roving dog-like robot. The platform offers a speech-driven user interface and can observe and interpret user actions and facial expressions via its computer vision sensor node. A particular benefit of this design is that no personally identifiable information passes beyond the neural inference nodes thus providing inbuilt compliance with data protection regulations.