Abstract:A contemporary feed application usually provides blended results of organic items and sponsored items~(ads) to users. Conventionally, ads are exposed at fixed positions. Such a static exposure strategy is inefficient due to ignoring users' personalized preferences towards ads. To this end, adaptive ad exposure has become an appealing strategy to boost the overall performance of the feed. However, existing approaches to implementing the adaptive ad exposure still suffer from several limitations: 1) they usually fall into sub-optimal solutions because of only focusing on request-level optimization without consideration of the long-term application-level performance and constraints, 2) they neglect the necessity of keeping the game-theoretical properties of ad auctions, which may lead to anarchy in bidding, and 3) they can hardly be deployed in large-scale applications due to high computational complexity. In this paper, we focus on long-term performance optimization under hierarchical constraints in feeds and formulate the adaptive ad exposure as a Dynamic Knapsack Problem. We propose an effective approach: Hierarchically Constrained Adaptive Ad Exposure~(HCA2E). We present that HCA2E possesses desired game-theoretical properties, computational efficiency, and performance robustness. Comprehensive offline and online experiments on a leading e-commerce application demonstrate the significant performance superiority of HCA2E over representative baselines. HCA2E has also been deployed on this application to serve millions of daily users.
Abstract:For online advertising in e-commerce, the traditional problem is to assign the right ad to the right user on fixed ad slots. In this paper, we investigate the problem of advertising with adaptive exposure, in which the number of ad slots and their locations can dynamically change over time based on their relative scores with recommendation products. In order to maintain user retention and long-term revenue, there are two types of constraints that need to be met in exposure: query-level and day-level constraints. We model this problem as constrained markov decision process with per-state constraint (psCMDP) and propose a constrained two-level reinforcement learning to decouple the original advertising exposure optimization problem into two relatively independent sub-optimization problems. We also propose a constrained hindsight experience replay mechanism to accelerate the policy training process. Experimental results show that our method can improve the advertising revenue while satisfying different levels of constraints under the real-world datasets. Besides, the proposal of constrained hindsight experience replay mechanism can significantly improve the training speed and the stability of policy performance.