Abstract:Legal Judgment Prediction (LJP) aims to form legal judgments based on the criminal fact description. However, researchers struggle to classify confusing criminal cases, such as robbery and theft, which requires LJP models to distinguish the nuances between similar crimes. Existing methods usually design handcrafted features to pick up necessary semantic legal clues to make more accurate legal judgment predictions. In this paper, we propose a Semantic-Aware Dual Encoder Model (SEMDR), which designs a novel legal clue tracing mechanism to conduct fine-grained semantic reasoning between criminal facts and instruments. Our legal clue tracing mechanism is built from three reasoning levels: 1) Lexicon-Tracing, which aims to extract criminal facts from criminal descriptions; 2) Sentence Representation Learning, which contrastively trains language models to better represent confusing criminal facts; 3) Multi-Fact Reasoning, which builds a reasons graph to propagate semantic clues among fact nodes to capture the subtle difference among criminal facts. Our legal clue tracing mechanism helps SEMDR achieve state-of-the-art on the CAIL2018 dataset and shows its advance in few-shot scenarios. Our experiments show that SEMDR has a strong ability to learn more uniform and distinguished representations for criminal facts, which helps to make more accurate predictions on confusing criminal cases and reduces the model uncertainty during making judgments. All codes will be released via GitHub.
Abstract:Multi-Modal Entity Alignment aims to discover identical entities across heterogeneous knowledge graphs. While recent studies have delved into fusion paradigms to represent entities holistically, the elimination of features irrelevant to alignment and modal inconsistencies is overlooked, which are caused by inherent differences in multi-modal features. To address these challenges, we propose a novel strategy of progressive modality freezing, called PMF, that focuses on alignmentrelevant features and enhances multi-modal feature fusion. Notably, our approach introduces a pioneering cross-modal association loss to foster modal consistency. Empirical evaluations across nine datasets confirm PMF's superiority, demonstrating stateof-the-art performance and the rationale for freezing modalities. Our code is available at https://github.com/ninibymilk/PMF-MMEA.