Abstract:Training an agent to achieve particular goals or perform desired behaviors is often accomplished through reinforcement learning, especially in the absence of expert demonstrations. However, supporting novel goals or behaviors through reinforcement learning requires the ad-hoc design of appropriate reward functions, which quickly becomes intractable. To address this challenge, we propose Text-Aware Diffusion for Policy Learning (TADPoLe), which uses a pretrained, frozen text-conditioned diffusion model to compute dense zero-shot reward signals for text-aligned policy learning. We hypothesize that large-scale pretrained generative models encode rich priors that can supervise a policy to behave not only in a text-aligned manner, but also in alignment with a notion of naturalness summarized from internet-scale training data. In our experiments, we demonstrate that TADPoLe is able to learn policies for novel goal-achievement and continuous locomotion behaviors specified by natural language, in both Humanoid and Dog environments. The behaviors are learned zero-shot without ground-truth rewards or expert demonstrations, and are qualitatively more natural according to human evaluation. We further show that TADPoLe performs competitively when applied to robotic manipulation tasks in the Meta-World environment.
Abstract:As synthetic data becomes higher quality and proliferates on the internet, machine learning models are increasingly trained on a mix of human- and machine-generated data. Despite the successful stories of using synthetic data for representation learning, using synthetic data for generative model training creates "self-consuming loops" which may lead to training instability or even collapse, unless certain conditions are met. Our paper aims to stabilize self-consuming generative model training. Our theoretical results demonstrate that by introducing an idealized correction function, which maps a data point to be more likely under the true data distribution, self-consuming loops can be made exponentially more stable. We then propose self-correction functions, which rely on expert knowledge (e.g. the laws of physics programmed in a simulator), and aim to approximate the idealized corrector automatically and at scale. We empirically validate the effectiveness of self-correcting self-consuming loops on the challenging human motion synthesis task, and observe that it successfully avoids model collapse, even when the ratio of synthetic data to real data is as high as 100%.
Abstract:Recognition and reasoning are two pillars of visual understanding. However, these tasks have an imbalance in focus; whereas recent advances in neural networks have shown strong empirical performance in visual recognition, there has been comparably much less success in solving visual reasoning. Intuitively, unifying these two tasks under a singular framework is desirable, as they are mutually dependent and beneficial. Motivated by the recent success of multi-task transformers for visual recognition and language understanding, we propose a unified neural architecture for visual recognition and reasoning with a generic interface (e.g., tokens) for both. Our framework enables the principled investigation of how different visual recognition tasks, datasets, and inductive biases can help enable spatiotemporal reasoning capabilities. Noticeably, we find that object detection, which requires spatial localization of individual objects, is the most beneficial recognition task for reasoning. We further demonstrate via probing that implicit object-centric representations emerge automatically inside our framework. Intriguingly, we discover that certain architectural choices such as the backbone model of the visual encoder have a significant impact on visual reasoning, but little on object detection. Given the results of our experiments, we believe that visual reasoning should be considered as a first-class citizen alongside visual recognition, as they are strongly correlated but benefit from potentially different design choices.
Abstract:We aim to investigate whether end-to-end learning of visual reasoning can be achieved with general-purpose neural networks, with the help of visual pretraining. A positive result would refute the common belief that explicit visual abstraction (e.g. object detection) is essential for compositional generalization on visual reasoning, and confirm the feasibility of a neural network "generalist" to solve visual recognition and reasoning tasks. We propose a simple and general self-supervised framework which "compresses" each video frame into a small set of tokens with a transformer network, and reconstructs the remaining frames based on the compressed temporal context. To minimize the reconstruction loss, the network must learn a compact representation for each image, as well as capture temporal dynamics and object permanence from temporal context. We perform evaluation on two visual reasoning benchmarks, CATER and ACRE. We observe that pretraining is essential to achieve compositional generalization for end-to-end visual reasoning. Our proposed framework outperforms traditional supervised pretraining, including image classification and explicit object detection, by large margins.
Abstract:Diffusion models have shown incredible capabilities as generative models; indeed, they power the current state-of-the-art models on text-conditioned image generation such as Imagen and DALL-E 2. In this work we review, demystify, and unify the understanding of diffusion models across both variational and score-based perspectives. We first derive Variational Diffusion Models (VDM) as a special case of a Markovian Hierarchical Variational Autoencoder, where three key assumptions enable tractable computation and scalable optimization of the ELBO. We then prove that optimizing a VDM boils down to learning a neural network to predict one of three potential objectives: the original source input from any arbitrary noisification of it, the original source noise from any arbitrarily noisified input, or the score function of a noisified input at any arbitrary noise level. We then dive deeper into what it means to learn the score function, and connect the variational perspective of a diffusion model explicitly with the Score-based Generative Modeling perspective through Tweedie's Formula. Lastly, we cover how to learn a conditional distribution using diffusion models via guidance.
Abstract:Data augmentation is a major component of many machine learning methods with state-of-the-art performance. Common augmentation strategies work by drawing random samples from a space of transformations. Unfortunately, such sampling approaches are limited in expressivity, as they are unable to scale to rich transformations that depend on numerous parameters due to the curse of dimensionality. Adversarial examples can be considered as an alternative scheme for data augmentation. By being trained on the most difficult modifications of the inputs, the resulting models are then hopefully able to handle other, presumably easier, modifications as well. The advantage of adversarial augmentation is that it replaces sampling with the use of a single, calculated perturbation that maximally increases the loss. The downside, however, is that these raw adversarial perturbations appear rather unstructured; applying them often does not produce a natural transformation, contrary to a desirable data augmentation technique. To address this, we propose a method to generate adversarial examples that maintain some desired natural structure. We first construct a subspace that only contains perturbations with the desired structure. We then project the raw adversarial gradient onto this space to select a structured transformation that would maximally increase the loss when applied. We demonstrate this approach through two types of image transformations: photometric and geometric. Furthermore, we show that training on such structured adversarial images improves generalization.
Abstract:Recommender systems can be formulated as a matrix completion problem, predicting ratings from user and item parameter vectors. Optimizing these parameters by subsampling data becomes difficult as the number of users and items grows. We develop a novel approach to generate all latent variables on demand from the ratings matrix itself and a fixed pool of parameters. We estimate missing ratings using chains of evidence that link them to a small set of prototypical users and items. Our model automatically addresses the cold-start and online learning problems by combining information across both users and items. We investigate the scaling behavior of this model, and demonstrate competitive results with respect to current matrix factorization techniques in terms of accuracy and convergence speed.