Abstract:Significant uncertainty in climate prediction and cloud physics is tied to observational gaps relating to shallow scattered clouds. Addressing these challenges requires remote sensing of their three-dimensional (3D) heterogeneous volumetric scattering content. This calls for passive scattering computed tomography (CT). We design a learning-based model (ProbCT) to achieve CT of such clouds, based on noisy multi-view spaceborne images. ProbCT infers - for the first time - the posterior probability distribution of the heterogeneous extinction coefficient, per 3D location. This yields arbitrary valuable statistics, e.g., the 3D field of the most probable extinction and its uncertainty. ProbCT uses a neural-field representation, making essentially real-time inference. ProbCT undergoes supervised training by a new labeled multi-class database of physics-based volumetric fields of clouds and their corresponding images. To improve out-of-distribution inference, we incorporate self-supervised learning through differential rendering. We demonstrate the approach in simulations and on real-world data, and indicate the relevance of 3D recovery and uncertainty to precipitation and renewable energy.
Abstract:The interaction between the supermassive black hole at the center of the Milky Way, Sagittarius A$^*$, and its accretion disk, occasionally produces high energy flares seen in X-ray, infrared and radio. One mechanism for observed flares is the formation of compact bright regions that appear within the accretion disk and close to the event horizon. Understanding these flares can provide a window into black hole accretion processes. Although sophisticated simulations predict the formation of these flares, their structure has yet to be recovered by observations. Here we show the first three-dimensional (3D) reconstruction of an emission flare in orbit recovered from ALMA light curves observed on April 11, 2017. Our recovery results show compact bright regions at a distance of roughly 6 times the event horizon. Moreover, our recovery suggests a clockwise rotation in a low-inclination orbital plane, a result consistent with prior studies by EHT and GRAVITY collaborations. To recover this emission structure we solve a highly ill-posed tomography problem by integrating a neural 3D representation (an emergent artificial intelligence approach for 3D reconstruction) with a gravitational model for black holes. Although the recovered 3D structure is subject, and sometimes sensitive, to the model assumptions, under physically motivated choices we find that our results are stable and our approach is successful on simulated data. We anticipate that in the future, this approach could be used to analyze a richer collection of time-series data that could shed light on the mechanisms governing black hole and plasma dynamics.
Abstract:Refractive Index Tomography is an inverse problem in which we seek to reconstruct a scene's 3D refractive field from 2D projected image measurements. The refractive field is not visible itself, but instead affects how the path of a light ray is continuously curved as it travels through space. Refractive fields appear across a wide variety of scientific applications, from translucent cell samples in microscopy to fields of dark matter bending light from faraway galaxies. This problem poses a unique challenge because the refractive field directly affects the path that light takes, making its recovery a non-linear problem. In addition, in contrast with traditional tomography, we seek to recover the refractive field using a projected image from only a single viewpoint by leveraging knowledge of light sources scattered throughout the medium. In this work, we introduce a method that uses a coordinate-based neural network to model the underlying continuous refractive field in a scene. We then use explicit modeling of rays' 3D spatial curvature to optimize the parameters of this network, reconstructing refractive fields with an analysis-by-synthesis approach. The efficacy of our approach is demonstrated by recovering refractive fields in simulation, and analyzing how recovery is affected by the light source distribution. We then test our method on a simulated dark matter mapping problem, where we recover the refractive field underlying a realistic simulated dark matter distribution.
Abstract:Measurements from the Event Horizon Telescope enabled the visualization of light emission around a black hole for the first time. So far, these measurements have been used to recover a 2D image under the assumption that the emission field is static over the period of acquisition. In this work, we propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole. Compared to other 3D reconstruction or tomography settings, this task poses two significant challenges: first, rays near black holes follow curved paths dictated by general relativity, and second, we only observe measurements from a single viewpoint. Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network, and uses knowledge of Keplerian orbital dynamics to establish correspondence between 3D points over time. Together, these enable BH-NeRF to recover accurate 3D emission fields, even in challenging situations with sparse measurements and uncertain orbital dynamics. This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center.
Abstract:Tomography aims to recover a three-dimensional (3D) density map of a medium or an object. In medical imaging, it is extensively used for diagnostics via X-ray computed tomography (CT). Optical diffusion tomography is an alternative to X-ray CT that uses multiply scattered light to deliver coarse density maps for soft tissues. We define and derive tomography of cloud droplet distributions via passive remote sensing. We use multi-view polarimetric images to fit a 3D polarized radiative transfer (RT) forward model. Our motivation is 3D volumetric probing of vertically-developed convectively-driven clouds that are ill-served by current methods in operational passive remote sensing. These techniques are based on strictly 1D RT modeling and applied to a single cloudy pixel, where cloud geometry is assumed to be that of a plane-parallel slab. Incident unpolarized sunlight, once scattered by cloud-droplets, changes its polarization state according to droplet size. Therefore, polarimetric measurements in the rainbow and glory angular regions can be used to infer the droplet size distribution. This work defines and derives a framework for a full 3D tomography of cloud droplets for both their mass concentration in space and their distribution across a range of sizes. This 3D retrieval of key microphysical properties is made tractable by our novel approach that involves a restructuring and differentiation of an open-source polarized 3D RT code to accommodate a special two-step optimization technique. Physically-realistic synthetic clouds are used to demonstrate the methodology with rigorous uncertainty quantification.
Abstract:To recover the three dimensional (3D) volumetric distribution of matter in an object, images of the object are captured from multiple directions and locations. Using these images tomographic computations extract the distribution. In highly scattering media and constrained, natural irradiance, tomography must explicitly account for off-axis scattering. Furthermore, the tomographic model and recovery must function when imaging is done in-situ, as occurs in medical imaging and ground-based atmospheric sensing. We formulate tomography that handles arbitrary orders of scattering, using a monte-carlo model. Moreover, the model is highly parallelizable in our formulation. This enables large scale rendering and recovery of volumetric scenes having a large number of variables. We solve stability and conditioning problems that stem from radiative transfer (RT) modeling in-situ.