Abstract:Direct imaging of exoplanets is crucial for advancing our understanding of planetary systems beyond our solar system, but it faces significant challenges due to the high contrast between host stars and their planets. Wavefront aberrations introduce speckles in the telescope science images, which are patterns of diffracted starlight that can mimic the appearance of planets, complicating the detection of faint exoplanet signals. Traditional post-processing methods, operating primarily in the image intensity domain, do not integrate wavefront sensing data. These data, measured mainly for adaptive optics corrections, have been overlooked as a potential resource for post-processing, partly due to the challenge of the evolving nature of wavefront aberrations. In this paper, we present a differentiable rendering approach that leverages these wavefront sensing data to improve exoplanet detection. Our differentiable renderer models wave-based light propagation through a coronagraphic telescope system, allowing gradient-based optimization to significantly improve starlight subtraction and increase sensitivity to faint exoplanets. Simulation experiments based on the James Webb Space Telescope configuration demonstrate the effectiveness of our approach, achieving substantial improvements in contrast and planet detection limits. Our results showcase how the computational advancements enabled by differentiable rendering can revitalize previously underexploited wavefront data, opening new avenues for enhancing exoplanet imaging and characterization.
Abstract:Inference is crucial in modern astronomical research, where hidden astrophysical features and patterns are often estimated from indirect and noisy measurements. Inferring the posterior of hidden features, conditioned on the observed measurements, is essential for understanding the uncertainty of results and downstream scientific interpretations. Traditional approaches for posterior estimation include sampling-based methods and variational inference. However, sampling-based methods are typically slow for high-dimensional inverse problems, while variational inference often lacks estimation accuracy. In this paper, we propose alpha-DPI, a deep learning framework that first learns an approximate posterior using alpha-divergence variational inference paired with a generative neural network, and then produces more accurate posterior samples through importance re-weighting of the network samples. It inherits strengths from both sampling and variational inference methods: it is fast, accurate, and scalable to high-dimensional problems. We apply our approach to two high-impact astronomical inference problems using real data: exoplanet astrometry and black hole feature extraction.