Abstract:This paper addresses the problem of learning fair Graph Neural Networks (GNNs) under missing protected attributes. GNNs have achieved state-of-the-art results in many relevant tasks where decisions might disproportionately impact specific communities. However, existing work on fair GNNs assumes that either protected attributes are fully-observed or that the missing data imputation is fair. In practice, biases in the imputation will be propagated to the model outcomes, leading them to overestimate the fairness of their predictions. We address this challenge by proposing Better Fair than Sorry (BFtS), a fair missing data imputation model for protected attributes used by fair GNNs. The key design principle behind BFtS is that imputations should approximate the worst-case scenario for the fair GNN -- i.e. when optimizing fairness is the hardest. We implement this idea using a 3-player adversarial scheme where two adversaries collaborate against the fair GNN. Experiments using synthetic and real datasets show that BFtS often achieves a better fairness $\times$ accuracy trade-off than existing alternatives.
Abstract:Explaining the decisions made by machine learning models for high-stakes applications is critical for increasing transparency and guiding improvements to these decisions. This is particularly true in the case of models for graphs, where decisions often depend on complex patterns combining rich structural and attribute data. While recent work has focused on designing so-called post-hoc explainers, the question of what constitutes a good explanation remains open. One intuitive property is that explanations should be sufficiently informative to enable humans to approximately reproduce the predictions given the data. However, we show that post-hoc explanations do not achieve this goal as their explanations are highly dependent on fixed model parameters (e.g., learned GNN weights). To address this challenge, this paper proposes RAGE (Robust Ante-hoc Graph Explainer), a novel and flexible ante-hoc explainer designed to discover explanations for a broad class of graph neural networks using bilevel optimization. RAGE is able to efficiently identify explanations that contain the full information needed for prediction while still enabling humans to rank these explanations based on their influence. Our experiments, based on graph classification and regression, show that RAGE explanations are more robust than existing post-hoc and ante-hoc approaches and often achieve similar or better accuracy than state-of-the-art models.
Abstract:Link prediction, which consists of predicting edges based on graph features, is a fundamental task in many graph applications. As for several related problems, Graph Neural Networks (GNNs), which are based on an attribute-centric message-passing paradigm, have become the predominant framework for link prediction. GNNs have consistently outperformed traditional topology-based heuristics, but what contributes to their performance? Are there simpler approaches that achieve comparable or better results? To answer these questions, we first identify important limitations in how GNN-based link prediction methods handle the intrinsic class imbalance of the problem -- due to the graph sparsity -- in their training and evaluation. Moreover, we propose Gelato, a novel topology-centric framework that applies a topological heuristic to a graph enhanced by attribute information via graph learning. Our model is trained end-to-end with an N-pair loss on an unbiased training set to address class imbalance. Experiments show that Gelato is 145% more accurate, trains 11 times faster, infers 6,000 times faster, and has less than half of the trainable parameters compared to state-of-the-art GNNs for link prediction.
Abstract:Graph embedding based on random-walks supports effective solutions for many graph-related downstream tasks. However, the abundance of embedding literature has made it increasingly difficult to compare existing methods and to identify opportunities to advance the state-of-the-art. Meanwhile, existing work has left several fundamental questions -- such as how embeddings capture different structural scales and how they should be applied for effective link prediction -- unanswered. This paper addresses these challenges with an analytical framework for random-walk based graph embedding that consists of three components: a random-walk process, a similarity function, and an embedding algorithm. Our framework not only categorizes many existing approaches but naturally motivates new ones. With it, we illustrate novel ways to incorporate embeddings at multiple scales to improve downstream task performance. We also show that embeddings based on autocovariance similarity, when paired with dot product ranking for link prediction, outperform state-of-the-art methods based on Pointwise Mutual Information similarity by up to 100%.
Abstract:Event detection is a critical task for timely decision-making in graph analytics applications. Despite the recent progress towards deep learning on graphs, event detection on dynamic graphs presents particular challenges to existing architectures. Real-life events are often associated with sudden deviations of the normal behavior of the graph. However, existing approaches for dynamic node embedding are unable to capture the graph-level dynamics related to events. In this paper, we propose DyGED, a simple yet novel deep learning model for event detection on dynamic graphs. DyGED learns correlations between the graph macro dynamics -- i.e. a sequence of graph-level representations -- and labeled events. Moreover, our approach combines structural and temporal self-attention mechanisms to account for application-specific node and time importances effectively. Our experimental evaluation, using a representative set of datasets, demonstrates that DyGED outperforms competing solutions in terms of event detection accuracy by up to 8.5% while being more scalable than the top alternatives. We also present case studies illustrating key features of our model.
Abstract:From the 2016 U.S. presidential election to the 2021 Capitol riots to the spread of misinformation related to COVID-19, many have blamed social media for today's deeply divided society. Recent advances in machine learning for signed networks hold the promise to guide small interventions with the goal of reducing polarization in social media. However, existing models are especially ineffective in predicting conflicts (or negative links) among users. This is due to a strong correlation between link signs and the network structure, where negative links between polarized communities are too sparse to be predicted even by state-of-the-art approaches. To address this problem, we first design a partition-agnostic polarization measure for signed graphs based on the signed random-walk and show that many real-world graphs are highly polarized. Then, we propose POLE (POLarized Embedding for signed networks), a signed embedding method for polarized graphs that captures both topological and signed similarities jointly via signed autocovariance. Through extensive experiments, we show that POLE significantly outperforms state-of-the-art methods in signed link prediction, particularly for negative links with gains of up to one order of magnitude.
Abstract:Ensuring fairness in machine learning algorithms is a challenging and important task. We consider the problem of clustering a set of points while ensuring fairness constraints. While there have been several attempts to capture group fairness in the k-clustering problem, fairness at an individual level is not well-studied. We introduce a new notion of individual fairness in k-clustering based on features that are not necessarily used for clustering. We show that this problem is NP-hard and does not admit a constant factor approximation. We then design a randomized algorithm that guarantees approximation both in terms of minimizing the clustering distance objective as well as individual fairness under natural restrictions on the distance metric and fairness constraints. Finally, our experimental results validate that our algorithm produces lower clustering costs compared to existing algorithms while being competitive in individual fairness.
Abstract:Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks.