Abstract:Malaria remains one of the most pressing public health concerns globally, causing significant morbidity and mortality, especially in sub-Saharan Africa. Rapid and accurate diagnosis is crucial for effective treatment and disease management. Traditional diagnostic methods, such as microscopic examination of blood smears, are labor-intensive and require significant expertise, which may not be readily available in resource-limited settings. This project aims to automate the detection of malaria-infected cells using a deep learning approach. We employed a convolutional neural network (CNN) based on the ResNet50 architecture, leveraging transfer learning to enhance performance. The Malaria Cell Images Dataset from Kaggle, containing 27,558 images categorized into infected and uninfected cells, was used for training and evaluation. Our model demonstrated high accuracy, precision, and recall, indicating its potential as a reliable tool for assisting in malaria diagnosis. Additionally, a web application was developed using Streamlit to allow users to upload cell images and receive predictions about malaria infection, making the technology accessible and user-friendly. This paper provides a comprehensive overview of the methodology, experiments, and results, highlighting the effectiveness of deep learning in medical image analysis.
Abstract:Out-of-distribution (OOD) generalisation is challenging because it involves not only learning from empirical data, but also deciding among various notions of generalisation, e.g., optimising the average-case risk, worst-case risk, or interpolations thereof. While this choice should in principle be made by the model operator like medical doctors, this information might not always be available at training time. The institutional separation between machine learners and model operators leads to arbitrary commitments to specific generalisation strategies by machine learners due to these deployment uncertainties. We introduce the Imprecise Domain Generalisation framework to mitigate this, featuring an imprecise risk optimisation that allows learners to stay imprecise by optimising against a continuous spectrum of generalisation strategies during training, and a model framework that allows operators to specify their generalisation preference at deployment. Supported by both theoretical and empirical evidence, our work showcases the benefits of integrating imprecision into domain generalisation.
Abstract:Adaptive test-time defenses are used to improve the robustness of deep neural networks to adversarial examples. However, existing methods significantly increase the inference time due to additional optimization on the model parameters or the input at test time. In this work, we propose a novel adaptive test-time defense strategy that is easy to integrate with any existing (robust) training procedure without additional test-time computation. Based on the notion of robustness of features that we present, the key idea is to project the trained models to the most robust feature space, thereby reducing the vulnerability to adversarial attacks in non-robust directions. We theoretically show that the top eigenspace of the feature matrix are more robust for a generalized additive model and support our argument for a large width neural network with the Neural Tangent Kernel (NTK) equivalence. We conduct extensive experiments on CIFAR-10 and CIFAR-100 datasets for several robustness benchmarks, including the state-of-the-art methods in RobustBench, and observe that the proposed method outperforms existing adaptive test-time defenses at much lower computation costs.
Abstract:Semi-supervised domain adaptation aims to classify data belonging to a target domain by utilizing a related label-rich source domain and very few labeled examples of the target domain. Here, we propose a novel framework, Pred&Guide, which leverages the inconsistency between the predicted and the actual class labels of the few labeled target examples to effectively guide the domain adaptation in a semi-supervised setting. Pred&Guide consists of three stages, as follows (1) First, in order to treat all the target samples equally, we perform unsupervised domain adaptation coupled with self-training; (2) Second is the label prediction stage, where the current model is used to predict the labels of the few labeled target examples, and (3) Finally, the correctness of the label predictions are used to effectively weigh source examples class-wise to better guide the domain adaptation process. Extensive experiments show that the proposed Pred&Guide framework achieves state-of-the-art results for two large-scale benchmark datasets, namely Office-Home and DomainNet.
Abstract:A reliable forecast of inflows to the reservoir is a key factor in the optimal operation of reservoirs. Real-time operation of the reservoir based on forecasts of inflows can lead to substantial economic gains. However, the forecast of inflow is an intricate task as it has to incorporate the impacts of climate and hydrological changes. Therefore, the major objective of the present work is to develop a novel approach based on long short-term memory (LSTM) for the forecast of inflows. Real-time inflow forecast, in other words, daily inflow at the reservoir helps in efficient operation of water resources. Also, daily variations in the release can be monitored efficiently and the reliability of operation is improved. This work proposes a naive anomaly detection algorithm baseline based on LSTM. In other words, a strong baseline to forecast flood and drought for any deep learning-based prediction model. The practicality of the approach has been demonstrated using the observed daily data of the past 20 years from Bhakra Dam in India. The results of the simulations conducted herein clearly indicate the supremacy of the LSTM approach over the traditional methods of forecasting. Although, experiments are run on data from Bhakra Dam Reservoir in India, LSTM model, and anomaly detection algorithm are general purpose and can be applied to any basin with minimal changes. A distinct practical advantage of the LSTM method presented herein is that it can adequately simulate non-stationarity and non-linearity in the historical data.
Abstract:Successful applications of deep learning (DL) requires large amount of annotated data. This often restricts the benefits of employing DL to businesses and individuals with large budgets for data-collection and computation. Summarization offers a possible solution by creating much smaller representative datasets that can allow real-time deep learning and analysis of big data and thus democratize use of DL. In the proposed work, our aim is to explore a novel approach to task-specific image corpus summarization using semantic information and self-supervision. Our method uses a classification-based Wasserstein generative adversarial network (CLSWGAN) as a feature generating network. The model also leverages rotational invariance as self-supervision and classification on another task. All these objectives are added on a features from resnet34 to make it discriminative and robust. The model then generates a summary at inference time by using K-means clustering in the semantic embedding space. Thus, another main advantage of this model is that it does not need to be retrained each time to obtain summaries of different lengths which is an issue with current end-to-end models. We also test our model efficacy by means of rigorous experiments both qualitatively and quantitatively.
Abstract:Optical Character Recognition and extraction is a key tool in the automatic evaluation of documents in a financial context. However, the image data provided to automated systems can have unreliable quality, and can be inherently low-resolution or downsampled and compressed by a transmitting program. In this paper, we illustrate the efficacy of a Gaussian Process upsampling model for the purposes of improving OCR and extraction through upsampling low resolution documents.