Abstract:Optical Character Recognition and extraction is a key tool in the automatic evaluation of documents in a financial context. However, the image data provided to automated systems can have unreliable quality, and can be inherently low-resolution or downsampled and compressed by a transmitting program. In this paper, we illustrate the efficacy of a Gaussian Process upsampling model for the purposes of improving OCR and extraction through upsampling low resolution documents.
Abstract:We describe Mega-COV, a billion-scale dataset from Twitter for studying COVID-19. The dataset is diverse (covers 234 countries), longitudinal (goes as back as 2007), multilingual (comes in 65 languages), and has a significant number of location-tagged tweets (~32M tweets). We release tweet IDs from the dataset, hoping it will be useful for studying various phenomena related to the ongoing pandemic and accelerating viable solutions to associated problems.