Abstract:For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.
Abstract:A beginning is made at mapping four neural theories of consciousness onto the Common Model of Cognition. This highlights how the four jointly depend on recurrent local modules plus a cognitive cycle operating on a global working memory with complex states, and reveals how an existing integrative view of consciousness from a neural perspective aligns with the Com-mon Model.
Abstract:The Common Model of Cognition (CMC) provides an abstract characterization of the structure and processing required by a cognitive architecture for human-like minds. We propose a unified approach to integrating metacognition within the CMC. We propose that metacognition involves reasoning over explicit representations of an agent's cognitive capabilities and processes in working memory. Our proposal exploits the existing cognitive capabilities of the CMC, making minimal extensions in the structure and information available within working memory. We provide examples of metacognition within our proposal.
Abstract:In-car conversational systems bring the promise to improve the in-vehicle user experience. Modern conversational systems are based on Large Language Models (LLMs), which makes them prone to errors such as hallucinations, i.e., inaccurate, fictitious, and therefore factually incorrect information. In this paper, we present an LLM-based methodology for the automatic factual benchmarking of in-car conversational systems. We instantiate our methodology with five LLM-based methods, leveraging ensembling techniques and diverse personae to enhance agreement and minimize hallucinations. We use our methodology to evaluate CarExpert, an in-car retrieval-augmented conversational question answering system, with respect to the factual correctness to a vehicle's manual. We produced a novel dataset specifically created for the in-car domain, and tested our methodology against an expert evaluation. Our results show that the combination of GPT-4 with the Input Output Prompting achieves over 90 per cent factual correctness agreement rate with expert evaluations, other than being the most efficient approach yielding an average response time of 4.5s. Our findings suggest that LLM-based testing constitutes a viable approach for the validation of conversational systems regarding their factual correctness.
Abstract:Scenario-based testing with driving simulators is extensively used to identify failing conditions of automated driving assistance systems (ADAS) and reduce the amount of in-field road testing. However, existing studies have shown that repeated test execution in the same as well as in distinct simulators can yield different outcomes, which can be attributed to sources of flakiness or different implementations of the physics, among other factors. In this paper, we present MultiSim, a novel approach to multi-simulation ADAS testing based on a search-based testing approach that leverages an ensemble of simulators to identify failure-inducing, simulator-agnostic test scenarios. During the search, each scenario is evaluated jointly on multiple simulators. Scenarios that produce consistent results across simulators are prioritized for further exploration, while those that fail on only a subset of simulators are given less priority, as they may reflect simulator-specific issues rather than generalizable failures. Our case study, which involves testing a deep neural network-based ADAS on different pairs of three widely used simulators, demonstrates that MultiSim outperforms single-simulator testing by achieving on average a higher rate of simulator-agnostic failures by 51%. Compared to a state-of-the-art multi-simulator approach that combines the outcome of independent test generation campaigns obtained in different simulators, MultiSim identifies 54% more simulator-agnostic failing tests while showing a comparable validity rate. An enhancement of MultiSim that leverages surrogate models to predict simulator disagreements and bypass executions does not only increase the average number of valid failures but also improves efficiency in finding the first valid failure.
Abstract:Advanced Driver Assistance Systems (ADAS) based on deep neural networks (DNNs) are widely used in autonomous vehicles for critical perception tasks such as object detection, semantic segmentation, and lane recognition. However, these systems are highly sensitive to input variations, such as noise and changes in lighting, which can compromise their effectiveness and potentially lead to safety-critical failures. This study offers a comprehensive empirical evaluation of image perturbations, techniques commonly used to assess the robustness of DNNs, to validate and improve the robustness and generalization of ADAS perception systems. We first conducted a systematic review of the literature, identifying 38 categories of perturbations. Next, we evaluated their effectiveness in revealing failures in two different ADAS, both at the component and at the system level. Finally, we explored the use of perturbation-based data augmentation and continuous learning strategies to improve ADAS adaptation to new operational design domains. Our results demonstrate that all categories of image perturbations successfully expose robustness issues in ADAS and that the use of dataset augmentation and continuous learning significantly improves ADAS performance in novel, unseen environments.
Abstract:Test Input Generators (TIGs) are crucial to assess the ability of Deep Learning (DL) image classifiers to provide correct predictions for inputs beyond their training and test sets. Recent advancements in Generative AI (GenAI) models have made them a powerful tool for creating and manipulating synthetic images, although these advancements also imply increased complexity and resource demands for training. In this work, we benchmark and combine different GenAI models with TIGs, assessing their effectiveness, efficiency, and quality of the generated test images, in terms of domain validity and label preservation. We conduct an empirical study involving three different GenAI architectures (VAEs, GANs, Diffusion Models), five classification tasks of increasing complexity, and 364 human evaluations. Our results show that simpler architectures, such as VAEs, are sufficient for less complex datasets like MNIST. However, when dealing with feature-rich datasets, such as ImageNet, more sophisticated architectures like Diffusion Models achieve superior performance by generating a higher number of valid, misclassification-inducing inputs.
Abstract:Cognition and emotion must be partnered in any complete model of a humanlike mind. This article proposes an extension to the Common Model of Cognition -- a developing consensus concerning what is required in such a mind -- for emotion that includes a linked pair of modules for emotion and metacognitive assessment, plus pervasive connections between these two new modules and the Common Model's existing modules and links.
Abstract:Evaluating the behavioral frontier of deep learning (DL) systems is crucial for understanding their generalizability and robustness. However, boundary testing is challenging due to their high-dimensional input space. Generative artificial intelligence offers a promising solution by modeling data distribution within compact latent space representations, thereby facilitating finer-grained explorations. In this work, we introduce MIMICRY, a novel black-box system-agnostic test generator that leverages these latent representations to generate frontier inputs for the DL systems under test. Specifically, MIMICRY uses style-based generative adversarial networks trained to learn the representation of inputs with disentangled features. This representation enables embedding style-mixing operations between a source and a target input, combining their features to explore the boundary between them. We evaluated the effectiveness of different MIMICRY configurations in generating boundary inputs for four popular DL image classification systems. Our results show that manipulating the latent space allows for effective and efficient exploration of behavioral frontiers. As opposed to a model-based baseline, MIMICRY generates a higher quality frontier of behaviors which includes more and closer inputs. Additionally, we assessed the validity of these inputs, revealing a high validity rate according to human assessors.
Abstract:In learning-enabled autonomous systems, safety monitoring of learned components is crucial to ensure their outputs do not lead to system safety violations, given the operational context of the system. However, developing a safety monitor for practical deployment in real-world applications is challenging. This is due to limited access to internal workings and training data of the learned component. Furthermore, safety monitors should predict safety violations with low latency, while consuming a reasonable amount of computation. To address the challenges, we propose a safety monitoring method based on probabilistic time series forecasting. Given the learned component outputs and an operational context, we empirically investigate different Deep Learning (DL)-based probabilistic forecasting to predict the objective measure capturing the satisfaction or violation of a safety requirement (safety metric). We empirically evaluate safety metric and violation prediction accuracy, and inference latency and resource usage of four state-of-the-art models, with varying horizons, using an autonomous aviation case study. Our results suggest that probabilistic forecasting of safety metrics, given learned component outputs and scenarios, is effective for safety monitoring. Furthermore, for the autonomous aviation case study, Temporal Fusion Transformer (TFT) was the most accurate model for predicting imminent safety violations, with acceptable latency and resource consumption.