Abstract:Advanced Driver Assistance Systems (ADAS) based on deep neural networks (DNNs) are widely used in autonomous vehicles for critical perception tasks such as object detection, semantic segmentation, and lane recognition. However, these systems are highly sensitive to input variations, such as noise and changes in lighting, which can compromise their effectiveness and potentially lead to safety-critical failures. This study offers a comprehensive empirical evaluation of image perturbations, techniques commonly used to assess the robustness of DNNs, to validate and improve the robustness and generalization of ADAS perception systems. We first conducted a systematic review of the literature, identifying 38 categories of perturbations. Next, we evaluated their effectiveness in revealing failures in two different ADAS, both at the component and at the system level. Finally, we explored the use of perturbation-based data augmentation and continuous learning strategies to improve ADAS adaptation to new operational design domains. Our results demonstrate that all categories of image perturbations successfully expose robustness issues in ADAS and that the use of dataset augmentation and continuous learning significantly improves ADAS performance in novel, unseen environments.
Abstract:The field of image generation through generative modelling is abundantly discussed nowadays. It can be used for various applications, such as up-scaling existing images, creating non-existing objects, such as interior design scenes, products or even human faces, and achieving transfer-learning processes. In this context, Generative Adversarial Networks (GANs) are a class of widely studied machine learning frameworks first appearing in the paper "Generative adversarial nets" by Goodfellow et al. that achieve the goal above. In our work, we reproduce and evaluate a novel variation of the original GAN network, the GANformer, proposed in "Generative Adversarial Transformers" by Hudson and Zitnick. This project aimed to recreate the methods presented in this paper to reproduce the original results and comment on the authors' claims. Due to resources and time limitations, we had to constrain the network's training times, dataset types, and sizes. Our research successfully recreated both variations of the proposed GANformer model and found differences between the authors' and our results. Moreover, discrepancies between the publication methodology and the one implemented, made available in the code, allowed us to study two undisclosed variations of the presented procedures.
Abstract:Precise relative localization is a crucial functional block for swarm robotics. This work presents a novel autonomous end-to-end system that addresses the monocular relative localization, through deep neural networks (DNNs), of two peer nano-drones, i.e., sub-40g of weight and sub-100mW processing power. To cope with the ultra-constrained nano-drone platform, we propose a vertically-integrated framework, from the dataset collection to the final in-field deployment, including dataset augmentation, quantization, and system optimizations. Experimental results show that our DNN can precisely localize a 10cm-size target nano-drone by employing only low-resolution monochrome images, up to ~2m distance. On a disjoint testing dataset our model yields a mean R2 score of 0.42 and a root mean square error of 18cm, which results in a mean in-field prediction error of 15cm and in a closed-loop control error of 17cm, over a ~60s-flight test. Ultimately, the proposed system improves the State-of-the-Art by showing long-endurance tracking performance (up to 2min continuous tracking), generalization capabilities being deployed in a never-seen-before environment, and requiring a minimal power consumption of 95mW for an onboard real-time inference-rate of 48Hz.