Abstract:In learning-enabled autonomous systems, safety monitoring of learned components is crucial to ensure their outputs do not lead to system safety violations, given the operational context of the system. However, developing a safety monitor for practical deployment in real-world applications is challenging. This is due to limited access to internal workings and training data of the learned component. Furthermore, safety monitors should predict safety violations with low latency, while consuming a reasonable amount of computation. To address the challenges, we propose a safety monitoring method based on probabilistic time series forecasting. Given the learned component outputs and an operational context, we empirically investigate different Deep Learning (DL)-based probabilistic forecasting to predict the objective measure capturing the satisfaction or violation of a safety requirement (safety metric). We empirically evaluate safety metric and violation prediction accuracy, and inference latency and resource usage of four state-of-the-art models, with varying horizons, using an autonomous aviation case study. Our results suggest that probabilistic forecasting of safety metrics, given learned component outputs and scenarios, is effective for safety monitoring. Furthermore, for the autonomous aviation case study, Temporal Fusion Transformer (TFT) was the most accurate model for predicting imminent safety violations, with acceptable latency and resource consumption.
Abstract:In Machine Learning (ML)-enabled autonomous systems (MLASs), it is essential to identify the hazard boundary of ML Components (MLCs) in the MLAS under analysis. Given that such boundary captures the conditions in terms of MLC behavior and system context that can lead to hazards, it can then be used to, for example, build a safety monitor that can take any predefined fallback mechanisms at runtime when reaching the hazard boundary. However, determining such hazard boundary for an ML component is challenging. This is due to the space combining system contexts (i.e., scenarios) and MLC behaviors (i.e., inputs and outputs) being far too large for exhaustive exploration and even to handle using conventional metaheuristics, such as genetic algorithms. Additionally, the high computational cost of simulations required to determine any MLAS safety violations makes the problem even more challenging. Furthermore, it is unrealistic to consider a region in the problem space deterministically safe or unsafe due to the uncontrollable parameters in simulations and the non-linear behaviors of ML models (e.g., deep neural networks) in the MLAS under analysis. To address the challenges, we propose MLCSHE (ML Component Safety Hazard Envelope), a novel method based on a Cooperative Co-Evolutionary Algorithm (CCEA), which aims to tackle a high-dimensional problem by decomposing it into two lower-dimensional search subproblems. Moreover, we take a probabilistic view of safe and unsafe regions and define a novel fitness function to measure the distance from the probabilistic hazard boundary and thus drive the search effectively. We evaluate the effectiveness and efficiency of MLCSHE on a complex Autonomous Vehicle (AV) case study. Our evaluation results show that MLCSHE is significantly more effective and efficient compared to a standard genetic algorithm and random search.