Abstract:Wearable systems provide continuous health monitoring and can lead to early detection of potential health issues. However, the lifecycle of wearable systems faces several challenges. First, effective model training for new wearable devices requires substantial labeled data from various subjects collected directly by the wearable. Second, subsequent model updates require further extensive labeled data for retraining. Finally, frequent model updating on the wearable device can decrease the battery life in long-term data monitoring. Addressing these challenges, in this paper, we propose MetaWearS, a meta-learning method to reduce the amount of initial data collection required. Moreover, our approach incorporates a prototypical updating mechanism, simplifying the update process by modifying the class prototype rather than retraining the entire model. We explore the performance of MetaWearS in two case studies, namely, the detection of epileptic seizures and the detection of atrial fibrillation. We show that by fine-tuning with just a few samples, we achieve 70% and 82% AUC for the detection of epileptic seizures and the detection of atrial fibrillation, respectively. Compared to a conventional approach, our proposed method performs better with up to 45% AUC. Furthermore, updating the model with only 16 minutes of additional labeled data increases the AUC by up to 5.3%. Finally, MetaWearS reduces the energy consumption for model updates by 456x and 418x for epileptic seizure and AF detection, respectively.
Abstract:The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
Abstract:The increasing complexity of transformer models in artificial intelligence expands their computational costs, memory usage, and energy consumption. Hardware acceleration tackles the ensuing challenges by designing processors and accelerators tailored for transformer models, supporting their computation hotspots with high efficiency. However, memory bandwidth can hinder improvements in hardware accelerators. Against this backdrop, in this paper we propose a novel memory arrangement strategy, governed by the hardware accelerator's kernel size, which effectively minimizes off-chip data access. This arrangement is particularly beneficial for end-to-end transformer model inference, where most of the computation is based on general matrix multiplication (GEMM) operations. Additionally, we address the overhead of non-GEMM operations in transformer models within the scope of this memory data arrangement. Our study explores the implementation and effectiveness of the proposed accelerator-driven data arrangement approach in both single- and multi-core systems. Our evaluation demonstrates that our approach can achieve up to a 2.8x speed increase when executing inferences employing state-of-the-art transformers.
Abstract:Vertical federated learning (VFL) enables a service provider (i.e., active party) who owns labeled features to collaborate with passive parties who possess auxiliary features to improve model performance. Existing VFL approaches, however, have two major vulnerabilities when passive parties unexpectedly quit in the deployment phase of VFL - severe performance degradation and intellectual property (IP) leakage of the active party's labels. In this paper, we propose \textbf{Party-wise Dropout} to improve the VFL model's robustness against the unexpected exit of passive parties and a defense method called \textbf{DIMIP} to protect the active party's IP in the deployment phase. We evaluate our proposed methods on multiple datasets against different inference attacks. The results show that Party-wise Dropout effectively maintains model performance after the passive party quits, and DIMIP successfully disguises label information from the passive party's feature extractor, thereby mitigating IP leakage.
Abstract:Integrating low-power wearable Internet of Things (IoT) systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). There is, however, a trade-off between performance of the algorithms and the low-power requirements of IoT platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use IoT devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose a many-to-one signals knowledge distillation approach targeting single-biosignal processing in IoT wearable systems. The starting point is to get a highly-accurate multi-biosignal DNN, then apply our approach to develop a single-biosignal DNN solution for IoT systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several state-of-the-art edge computing platforms, such as Kendryte K210 and Raspberry Pi Zero.
Abstract:Realistic mobility models can demonstrate more precise evaluation results because their parameters are closer to the reality. In this paper a realistic Fuzzy Mobility Model has been proposed. This model has rules which is changeable depending on nodes and environment conditions. This model is more complete and precise than the other mobility models and this is the advantage of this model. After simulation, it was found out that not only considering nodes movement as being imprecise (fuzzy) has a positive effects on most of ad hoc network parameters, but also, more importantly as they are closer to the real world condition, they can have a more positive effect on the implementation of ad hoc network protocols.