Abstract:Vertical federated learning (VFL) enables a service provider (i.e., active party) who owns labeled features to collaborate with passive parties who possess auxiliary features to improve model performance. Existing VFL approaches, however, have two major vulnerabilities when passive parties unexpectedly quit in the deployment phase of VFL - severe performance degradation and intellectual property (IP) leakage of the active party's labels. In this paper, we propose \textbf{Party-wise Dropout} to improve the VFL model's robustness against the unexpected exit of passive parties and a defense method called \textbf{DIMIP} to protect the active party's IP in the deployment phase. We evaluate our proposed methods on multiple datasets against different inference attacks. The results show that Party-wise Dropout effectively maintains model performance after the passive party quits, and DIMIP successfully disguises label information from the passive party's feature extractor, thereby mitigating IP leakage.
Abstract:Integrating low-power wearable Internet of Things (IoT) systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). There is, however, a trade-off between performance of the algorithms and the low-power requirements of IoT platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use IoT devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose a many-to-one signals knowledge distillation approach targeting single-biosignal processing in IoT wearable systems. The starting point is to get a highly-accurate multi-biosignal DNN, then apply our approach to develop a single-biosignal DNN solution for IoT systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several state-of-the-art edge computing platforms, such as Kendryte K210 and Raspberry Pi Zero.