Abstract:Kolmogorov-Arnold Networks (KANs) represent an innovation in neural network architectures, offering a compelling alternative to Multi-Layer Perceptrons (MLPs) in models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformers. By advancing network design, KANs are driving groundbreaking research and enabling transformative applications across various scientific domains involving neural networks. However, existing KANs often require significantly more parameters in their network layers compared to MLPs. To address this limitation, this paper introduces PRKANs (\textbf{P}arameter-\textbf{R}educed \textbf{K}olmogorov-\textbf{A}rnold \textbf{N}etworks), which employ several methods to reduce the parameter count in KAN layers, making them comparable to MLP layers. Experimental results on the MNIST and Fashion-MNIST datasets demonstrate that PRKANs with attention mechanisms outperform several existing KANs and rival the performance of MLPs, albeit with slightly longer training times. Furthermore, the study highlights the advantages of Gaussian Radial Basis Functions (GRBFs) and layer normalization in KAN designs. The repository for this work is available at: \url{https://github.com/hoangthangta/All-KAN}.
Abstract:The generation of high-quality medical time series data is essential for advancing healthcare diagnostics and safeguarding patient privacy. Specifically, synthesizing realistic phonocardiogram (PCG) signals offers significant potential as a cost-effective and efficient tool for cardiac disease pre-screening. Despite its potential, the synthesis of PCG signals for this specific application received limited attention in research. In this study, we employ and compare three state-of-the-art generative models from different categories - WaveNet, DoppelGANger, and DiffWave - to generate high-quality PCG data. We use data from the George B. Moody PhysioNet Challenge 2022. Our methods are evaluated using various metrics widely used in the previous literature in the domain of time series data generation, such as mean absolute error and maximum mean discrepancy. Our results demonstrate that the generated PCG data closely resembles the original datasets, indicating the effectiveness of our generative models in producing realistic synthetic PCG data. In our future work, we plan to incorporate this method into a data augmentation pipeline to synthesize abnormal PCG signals with heart murmurs, in order to address the current scarcity of abnormal data. We hope to improve the robustness and accuracy of diagnostic tools in cardiology, enhancing their effectiveness in detecting heart murmurs.
Abstract:Social support, conveyed through a multitude of interactions and platforms such as social media, plays a pivotal role in fostering a sense of belonging, aiding resilience in the face of challenges, and enhancing overall well-being. This paper introduces Social Support Detection (SSD) as a Natural language processing (NLP) task aimed at identifying supportive interactions within online communities. The study presents the task of Social Support Detection (SSD) in three subtasks: two binary classification tasks and one multiclass task, with labels detailed in the dataset section. We conducted experiments on a dataset comprising 10,000 YouTube comments. Traditional machine learning models were employed, utilizing various feature combinations that encompass linguistic, psycholinguistic, emotional, and sentiment information. Additionally, we experimented with neural network-based models using various word embeddings to enhance the performance of our models across these subtasks.The results reveal a prevalence of group-oriented support in online dialogues, reflecting broader societal patterns. The findings demonstrate the effectiveness of integrating psycholinguistic, emotional, and sentiment features with n-grams in detecting social support and distinguishing whether it is directed toward an individual or a group. The best results for different subtasks across all experiments range from 0.72 to 0.82.
Abstract:The proliferation of fake news has emerged as a significant threat to the integrity of information dissemination, particularly on social media platforms. Misinformation can spread quickly due to the ease of creating and disseminating content, affecting public opinion and sociopolitical events. Identifying false information is therefore essential to reducing its negative consequences and maintaining the reliability of online news sources. Traditional approaches to fake news detection often rely solely on content-based features, overlooking the crucial role of social context in shaping the perception and propagation of news articles. In this paper, we propose a comprehensive approach that integrates social context-based features with news content features to enhance the accuracy of fake news detection in under-resourced languages. We perform several experiments utilizing a variety of methodologies, including traditional machine learning, neural networks, ensemble learning, and transfer learning. Assessment of the outcomes of the experiments shows that the ensemble learning approach has the highest accuracy, achieving a 0.99 F1 score. Additionally, when compared with monolingual models, the fine-tuned model with the target language outperformed others, achieving a 0.94 F1 score. We analyze the functioning of the models, considering the important features that contribute to model performance, using explainable AI techniques.
Abstract:In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, quadratic function representation, and concatenation. In our experiments, we compare FC-KAN with multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. A variant of FC-KAN, which uses a combination of outputs from B-splines and Difference of Gaussians (DoG) in the form of a quadratic function, outperformed all other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
Abstract:Identifying misogyny using artificial intelligence is a form of combating online toxicity against women. However, the subjective nature of interpreting misogyny poses a significant challenge to model the phenomenon. In this paper, we propose a multitask learning approach that leverages the subjectivity of this task to enhance the performance of the misogyny identification systems. We incorporated diverse perspectives from annotators in our model design, considering gender and age across six profile groups, and conducted extensive experiments and error analysis using two language models to validate our four alternative designs of the multitask learning technique to identify misogynistic content in English tweets. The results demonstrate that incorporating various viewpoints enhances the language models' ability to interpret different forms of misogyny. This research advances content moderation and highlights the importance of embracing diverse perspectives to build effective online moderation systems.
Abstract:This paper describes our participation in Task 3 and Task 5 of the #SMM4H (Social Media Mining for Health) 2024 Workshop, explicitly targeting the classification challenges within tweet data. Task 3 is a multi-class classification task centered on tweets discussing the impact of outdoor environments on symptoms of social anxiety. Task 5 involves a binary classification task focusing on tweets reporting medical disorders in children. We applied transfer learning from pre-trained encoder-decoder models such as BART-base and T5-small to identify the labels of a set of given tweets. We also presented some data augmentation methods to see their impact on the model performance. Finally, the systems obtained the best F1 score of 0.627 in Task 3 and the best F1 score of 0.841 in Task 5.
Abstract:The paper focuses on the marginalization of indigenous language communities in the face of rapid technological advancements. We highlight the cultural richness of these languages and the risk they face of being overlooked in the realm of Natural Language Processing (NLP). We aim to bridge the gap between these communities and researchers, emphasizing the need for inclusive technological advancements that respect indigenous community perspectives. We show the NLP progress of indigenous Latin American languages and the survey that covers the status of indigenous languages in Latin America, their representation in NLP, and the challenges and innovations required for their preservation and development. The paper contributes to the current literature in understanding the need and progress of NLP for indigenous communities of Latin America, specifically low-resource and indigenous communities in general.
Abstract:Recent research in natural language processing (NLP) has achieved impressive performance in tasks such as machine translation (MT), news classification, and question-answering in high-resource languages. However, the performance of MT leaves much to be desired for low-resource languages. This is due to the smaller size of available parallel corpora in these languages, if such corpora are available at all. NLP in Ethiopian languages suffers from the same issues due to the unavailability of publicly accessible datasets for NLP tasks, including MT. To help the research community and foster research for Ethiopian languages, we introduce EthioMT -- a new parallel corpus for 15 languages. We also create a new benchmark by collecting a dataset for better-researched languages in Ethiopia. We evaluate the newly collected corpus and the benchmark dataset for 23 Ethiopian languages using transformer and fine-tuning approaches.
Abstract:Effective communication between healthcare providers and patients is crucial to providing high-quality patient care. In this work, we investigate how Doctor-written and AI-generated texts in healthcare consultations can be classified using state-of-the-art embeddings and one-shot classification systems. By analyzing embeddings such as bag-of-words, character n-grams, Word2Vec, GloVe, fastText, and GPT2 embeddings, we examine how well our one-shot classification systems capture semantic information within medical consultations. Results show that the embeddings are capable of capturing semantic features from text in a reliable and adaptable manner. Overall, Word2Vec, GloVe and Character n-grams embeddings performed well, indicating their suitability for modeling targeted to this task. GPT2 embedding also shows notable performance, indicating its suitability for models tailored to this task as well. Our machine learning architectures significantly improved the quality of health conversations when training data are scarce, improving communication between patients and healthcare providers.