Abstract:The black-box nature of large language models (LLMs) necessitates the development of eXplainable AI (XAI) techniques for transparency and trustworthiness. However, evaluating these techniques remains a challenge. This study presents a general evaluation framework using four key metrics: Human-reasoning Agreement (HA), Robustness, Consistency, and Contrastivity. We assess the effectiveness of six explainability techniques from five different XAI categories model simplification (LIME), perturbation-based methods (SHAP), gradient-based approaches (InputXGradient, Grad-CAM), Layer-wise Relevance Propagation (LRP), and attention mechanisms-based explainability methods (Attention Mechanism Visualization, AMV) across five encoder-based language models: TinyBERT, BERTbase, BERTlarge, XLM-R large, and DeBERTa-xlarge, using the IMDB Movie Reviews and Tweet Sentiment Extraction (TSE) datasets. Our findings show that the model simplification-based XAI method (LIME) consistently outperforms across multiple metrics and models, significantly excelling in HA with a score of 0.9685 on DeBERTa-xlarge, robustness, and consistency as the complexity of large language models increases. AMV demonstrates the best Robustness, with scores as low as 0.0020. It also excels in Consistency, achieving near-perfect scores of 0.9999 across all models. Regarding Contrastivity, LRP performs the best, particularly on more complex models, with scores up to 0.9371.
Abstract:The proliferation of fake news has emerged as a significant threat to the integrity of information dissemination, particularly on social media platforms. Misinformation can spread quickly due to the ease of creating and disseminating content, affecting public opinion and sociopolitical events. Identifying false information is therefore essential to reducing its negative consequences and maintaining the reliability of online news sources. Traditional approaches to fake news detection often rely solely on content-based features, overlooking the crucial role of social context in shaping the perception and propagation of news articles. In this paper, we propose a comprehensive approach that integrates social context-based features with news content features to enhance the accuracy of fake news detection in under-resourced languages. We perform several experiments utilizing a variety of methodologies, including traditional machine learning, neural networks, ensemble learning, and transfer learning. Assessment of the outcomes of the experiments shows that the ensemble learning approach has the highest accuracy, achieving a 0.99 F1 score. Additionally, when compared with monolingual models, the fine-tuned model with the target language outperformed others, achieving a 0.94 F1 score. We analyze the functioning of the models, considering the important features that contribute to model performance, using explainable AI techniques.