Abstract:The proliferation of fake news has emerged as a significant threat to the integrity of information dissemination, particularly on social media platforms. Misinformation can spread quickly due to the ease of creating and disseminating content, affecting public opinion and sociopolitical events. Identifying false information is therefore essential to reducing its negative consequences and maintaining the reliability of online news sources. Traditional approaches to fake news detection often rely solely on content-based features, overlooking the crucial role of social context in shaping the perception and propagation of news articles. In this paper, we propose a comprehensive approach that integrates social context-based features with news content features to enhance the accuracy of fake news detection in under-resourced languages. We perform several experiments utilizing a variety of methodologies, including traditional machine learning, neural networks, ensemble learning, and transfer learning. Assessment of the outcomes of the experiments shows that the ensemble learning approach has the highest accuracy, achieving a 0.99 F1 score. Additionally, when compared with monolingual models, the fine-tuned model with the target language outperformed others, achieving a 0.94 F1 score. We analyze the functioning of the models, considering the important features that contribute to model performance, using explainable AI techniques.
Abstract:This study performs analysis of Predictive statements, Hope speech, and Regret Detection behaviors within cryptocurrency-related discussions, leveraging advanced natural language processing techniques. We introduce a novel classification scheme named "Prediction statements," categorizing comments into Predictive Incremental, Predictive Decremental, Predictive Neutral, or Non-Predictive categories. Employing GPT-4o, a cutting-edge large language model, we explore sentiment dynamics across five prominent cryptocurrencies: Cardano, Binance, Matic, Fantom, and Ripple. Our analysis reveals distinct patterns in predictive sentiments, with Matic demonstrating a notably higher propensity for optimistic predictions. Additionally, we investigate hope and regret sentiments, uncovering nuanced interplay between these emotions and predictive behaviors. Despite encountering limitations related to data volume and resource availability, our study reports valuable discoveries concerning investor behavior and sentiment trends within the cryptocurrency market, informing strategic decision-making and future research endeavors.
Abstract:This study delves into the relationship between emotional trends from X platform data and the market dynamics of well-known cryptocurrencies Cardano, Binance, Fantom, Matic, and Ripple over the period from October 2022 to March 2023. Leveraging SenticNet, we identified emotions like Fear and Anxiety, Rage and Anger, Grief and Sadness, Delight and Pleasantness, Enthusiasm and Eagerness, and Delight and Joy. Following data extraction, we segmented each month into bi-weekly intervals, replicating this process for price data obtained from Finance-Yahoo. Consequently, a comparative analysis was conducted, establishing connections between emotional trends observed across bi-weekly intervals and cryptocurrency prices, uncovering significant correlations between emotional sentiments and coin valuations.
Abstract:The paper focuses on the marginalization of indigenous language communities in the face of rapid technological advancements. We highlight the cultural richness of these languages and the risk they face of being overlooked in the realm of Natural Language Processing (NLP). We aim to bridge the gap between these communities and researchers, emphasizing the need for inclusive technological advancements that respect indigenous community perspectives. We show the NLP progress of indigenous Latin American languages and the survey that covers the status of indigenous languages in Latin America, their representation in NLP, and the challenges and innovations required for their preservation and development. The paper contributes to the current literature in understanding the need and progress of NLP for indigenous communities of Latin America, specifically low-resource and indigenous communities in general.
Abstract:Recent research in natural language processing (NLP) has achieved impressive performance in tasks such as machine translation (MT), news classification, and question-answering in high-resource languages. However, the performance of MT leaves much to be desired for low-resource languages. This is due to the smaller size of available parallel corpora in these languages, if such corpora are available at all. NLP in Ethiopian languages suffers from the same issues due to the unavailability of publicly accessible datasets for NLP tasks, including MT. To help the research community and foster research for Ethiopian languages, we introduce EthioMT -- a new parallel corpus for 15 languages. We also create a new benchmark by collecting a dataset for better-researched languages in Ethiopia. We evaluate the newly collected corpus and the benchmark dataset for 23 Ethiopian languages using transformer and fine-tuning approaches.
Abstract:Large language models (LLMs) have gained popularity recently due to their outstanding performance in various downstream Natural Language Processing (NLP) tasks. However, low-resource languages are still lagging behind current state-of-the-art (SOTA) developments in the field of NLP due to insufficient resources to train LLMs. Ethiopian languages exhibit remarkable linguistic diversity, encompassing a wide array of scripts, and are imbued with profound religious and cultural significance. This paper introduces EthioLLM -- multilingual large language models for five Ethiopian languages (Amharic, Ge'ez, Afan Oromo, Somali, and Tigrinya) and English, and Ethiobenchmark -- a new benchmark dataset for various downstream NLP tasks. We evaluate the performance of these models across five downstream NLP tasks. We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models. Our dataset and models are available at the https://huggingface.co/EthioNLP repository.
Abstract:This paper presents the creation of initial bilingual corpora for thirteen very low-resource languages of India, all from Northeast India. It also presents the results of initial translation efforts in these languages. It creates the first-ever parallel corpora for these languages and provides initial benchmark neural machine translation results for these languages. We intend to extend these corpora to include a large number of low-resource Indian languages and integrate the effort with our prior work with African and American-Indian languages to create corpora covering a large number of languages from across the world.
Abstract:In natural language processing (NLP), lexical function is a concept to unambiguously represent semantic and syntactic features of words and phrases in text first crafted in the Meaning-Text Theory. Hierarchical classification of lexical functions involves organizing these features into a tree-like hierarchy of categories or labels. This is a challenging task as it requires a good understanding of the context and the relationships among words and phrases in text. It also needs large amounts of labeled data to train language models effectively. In this paper, we present a dataset of most frequent Spanish verb-noun collocations and sentences where they occur, each collocation is assigned to one of 37 lexical functions defined as classes for a hierarchical classification task. Each class represents a relation between the noun and the verb in a collocation involving their semantic and syntactic features. We combine the classes in a tree-based structure, and introduce classification objectives for each level of the structure. The dataset was created by dependency tree parsing and matching of the phrases in Spanish news. We provide baselines and data splits for each objective.
Abstract:In this paper, we investigate the issue of hate speech by presenting a novel task of translating hate speech into non-hate speech text while preserving its meaning. As a case study, we use Spanish texts. We provide a dataset and several baselines as a starting point for further research in the task. We evaluated our baseline results using multiple metrics, including BLEU scores. The aim of this study is to contribute to the development of more effective methods for reducing the spread of hate speech in online communities.
Abstract:In this paper, we present a parallel Spanish-Mazatec and Spanish-Mixtec corpus for machine translation (MT) tasks, where Mazatec and Mixtec are two indigenous Mexican languages. We evaluated the usability of the collected corpus using three different approaches: transformer, transfer learning, and fine-tuning pre-trained multilingual MT models. Fine-tuning the Facebook M2M100-48 model outperformed the other approaches, with BLEU scores of 12.09 and 22.25 for Mazatec-Spanish and Spanish-Mazatec translations, respectively, and 16.75 and 22.15 for Mixtec-Spanish and Spanish-Mixtec translations, respectively. The findings show that the dataset size (9,799 sentences in Mazatec and 13,235 sentences in Mixtec) affects translation performance and that indigenous languages work better when used as target languages. The findings emphasize the importance of creating parallel corpora for indigenous languages and fine-tuning models for low-resource translation tasks. Future research will investigate zero-shot and few-shot learning approaches to further improve translation performance in low-resource settings. The dataset and scripts are available at \url{https://github.com/atnafuatx/Machine-Translation-Resources}