Abstract:Multilingual language models (MLLMs) are crucial for handling text across various languages, yet they often show performance disparities due to differences in resource availability and linguistic characteristics. While the impact of pre-train data percentage and model size on performance is well-known, our study reveals additional critical factors that significantly influence MLLM effectiveness. Analyzing a wide range of features, including geographical, linguistic, and resource-related aspects, we focus on the SIB-200 dataset for classification and the Flores-200 dataset for machine translation, using regression models and SHAP values across 204 languages. Our findings identify token similarity and country similarity as pivotal factors, alongside pre-train data and model size, in enhancing model performance. Token similarity facilitates cross-lingual transfer, while country similarity highlights the importance of shared cultural and linguistic contexts. These insights offer valuable guidance for developing more equitable and effective multilingual language models, particularly for underrepresented languages.
Abstract:Fairness in multi-document summarization of user-generated content remains a critical challenge in natural language processing (NLP). Existing summarization methods often fail to ensure equitable representation across different social groups, leading to biased outputs. In this paper, we introduce two novel methods for fair extractive summarization: FairExtract, a clustering-based approach, and FairGPT, which leverages GPT-3.5-turbo with fairness constraints. We evaluate these methods using Divsumm summarization dataset of White-aligned, Hispanic, and African-American dialect tweets and compare them against relevant baselines. The results obtained using a comprehensive set of summarization quality metrics such as SUPERT, BLANC, SummaQA, BARTScore, and UniEval, as well as a fairness metric F, demonstrate that FairExtract and FairGPT achieve superior fairness while maintaining competitive summarization quality. Additionally, we introduce composite metrics (e.g., SUPERT+F, BLANC+F) that integrate quality and fairness into a single evaluation framework, offering a more nuanced understanding of the trade-offs between these objectives. This work highlights the importance of fairness in summarization and sets a benchmark for future research in fairness-aware NLP models.
Abstract:Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We comprehensively evaluate several long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.
Abstract:Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources. This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions in knowledge-consistent scenarios. We introduce a novel dataset, WikiAtomic, and systematically vary context sizes to analyze how LLMs prioritize and utilize the provided information and their parametric knowledge in knowledge-consistent scenarios. Additionally, we also study their tendency to hallucinate under varying context sizes. Our findings reveal consistent patterns across models, including a consistent reliance on both contextual (around 70%) and parametric (around 30%) knowledge, and a decrease in hallucinations with increasing context. These insights highlight the importance of more effective context organization and developing models that use input more deterministically for robust performance.
Abstract:Online conversations are particularly susceptible to derailment, which can manifest itself in the form of toxic communication patterns including disrespectful comments and abuse. Forecasting conversation derailment predicts signs of derailment in advance enabling proactive moderation of conversations. State-of-the-art approaches to conversation derailment forecasting sequentially encode conversations and use graph neural networks to model dialogue user dynamics. However, existing graph models are not able to capture complex conversational characteristics such as context propagation and emotional shifts. The use of common sense knowledge enables a model to capture such characteristics, thus improving performance. Following this approach, here we derive commonsense statements from a knowledge base of dialogue contextual information to enrich a graph neural network classification architecture. We fuse the multi-source information on utterance into capsules, which are used by a transformer-based forecaster to predict conversation derailment. Our model captures conversation dynamics and context propagation, outperforming the state-of-the-art models on the CGA and CMV benchmark datasets
Abstract:Text summarization models have typically focused on optimizing aspects of quality such as fluency, relevance, and coherence, particularly in the context of news articles. However, summarization models are increasingly being used to summarize diverse sources of text, such as social media data, that encompass a wide demographic user base. It is thus crucial to assess not only the quality of the generated summaries, but also the extent to which they can fairly represent the opinions of diverse social groups. Position bias, a long-known issue in news summarization, has received limited attention in the context of social multi-document summarization. We deeply investigate this phenomenon by analyzing the effect of group ordering in input documents when summarizing tweets from three distinct linguistic communities: African-American English, Hispanic-aligned Language, and White-aligned Language. Our empirical analysis shows that although the textual quality of the summaries remains consistent regardless of the input document order, in terms of fairness, the results vary significantly depending on how the dialect groups are presented in the input data. Our results suggest that position bias manifests differently in social multi-document summarization, severely impacting the fairness of summarization models.
Abstract:This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages. We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset, a topic classification dataset encompassing 204 languages. Our analysis considers three scenarios: ALL languages, SEEN languages (present in the model's pretraining data), and UNSEEN languages (not present or documented in the model's pretraining data in any meaningful way). We examine the impact of factors such as pretraining data size, general resource availability, language family, and script type on model performance. Decision tree analysis reveals that pretraining data size is the most influential factor for SEEN languages. However, interestingly, script type and language family are crucial for UNSEEN languages, highlighting the importance of cross-lingual transfer learning. Notably, model size and architecture do not significantly alter the most important features identified. Our findings provide valuable insights into the strengths and limitations of current MLLMs and hope to guide the development of more effective and equitable multilingual NLP systems.
Abstract:Recent advances in interactive large language models like ChatGPT have revolutionized various domains; however, their behavior in natural and role-play conversation settings remains underexplored. In our study, we address this gap by deeply investigating how ChatGPT behaves during conversations in different settings by analyzing its interactions in both a normal way and a role-play setting. We introduce a novel dataset of broad range of human-AI conversations annotated with user motives and model naturalness to examine (i) how humans engage with the conversational AI model, and (ii) how natural are AI model responses. Our study highlights the diversity of user motives when interacting with ChatGPT and variable AI naturalness, showing not only the nuanced dynamics of natural conversations between humans and AI, but also providing new avenues for improving the effectiveness of human-AI communication.
Abstract:The use of generative AI to create text descriptions from graphs has mostly focused on knowledge graphs, which connect concepts using facts. In this work we explore the capability of large pretrained language models to generate text from causal graphs, where salient concepts are represented as nodes and causality is represented via directed, typed edges. The causal reasoning encoded in these graphs can support applications as diverse as healthcare or marketing. Using two publicly available causal graph datasets, we empirically investigate the performance of four GPT-3 models under various settings. Our results indicate that while causal text descriptions improve with training data, compared to fact-based graphs, they are harder to generate under zero-shot settings. Results further suggest that users of generative AI can deploy future applications faster since similar performances are obtained when training a model with only a few examples as compared to fine-tuning via a large curated dataset.
Abstract:Conversation systems accommodate diverse users with unique personalities and distinct writing styles. Within the domain of multi-turn dialogue modeling, this work studies the impact of varied utterance lengths on the quality of subsequent responses generated by conversation models. Using GPT-3 as the base model, multiple dialogue datasets, and several metrics, we conduct a thorough exploration of this aspect of conversational models. Our analysis sheds light on the complex relationship between utterance lengths and the quality of follow-up responses generated by dialogue systems. Empirical findings suggests that, for certain types of conversations, utterance lengths can be reduced by up to 72% without any noticeable difference in the quality of follow-up responses.