Abstract:This study explores how recent large language models (LLMs) navigate relative clause attachment {ambiguity} and use world knowledge biases for disambiguation in six typologically diverse languages: English, Chinese, Japanese, Korean, Russian, and Spanish. We describe the process of creating a novel dataset -- MultiWho -- for fine-grained evaluation of relative clause attachment preferences in ambiguous and unambiguous contexts. Our experiments with three LLMs indicate that, contrary to humans, LLMs consistently exhibit a preference for local attachment, displaying limited responsiveness to syntactic variations or language-specific attachment patterns. Although LLMs performed well in unambiguous cases, they rigidly prioritized world knowledge biases, lacking the flexibility of human language processing. These findings highlight the need for more diverse, pragmatically nuanced multilingual training to improve LLMs' handling of complex structures and human-like comprehension.
Abstract:This study examines how large language models (LLMs) resolve relative clause (RC) attachment ambiguities and compares their performance to human sentence processing. Focusing on two linguistic factors, namely the length of RCs and the syntactic position of complex determiner phrases (DPs), we assess whether LLMs can achieve human-like interpretations amid the complexities of language. In this study, we evaluated several LLMs, including Claude, Gemini and Llama, in multiple languages: English, Spanish, French, German, Japanese, and Korean. While these models performed well in Indo-European languages (English, Spanish, French, and German), they encountered difficulties in Asian languages (Japanese and Korean), often defaulting to incorrect English translations. The findings underscore the variability in LLMs' handling of linguistic ambiguities and highlight the need for model improvements, particularly for non-European languages. This research informs future enhancements in LLM design to improve accuracy and human-like processing in diverse linguistic environments.
Abstract:The rapid advancement of Large Language Models (LLMs), particularly those trained on multilingual corpora, has intensified the need for a deeper understanding of their performance across a diverse range of languages and model sizes. Our research addresses this critical need by studying the performance and scaling behavior of multilingual LLMs in text classification and machine translation tasks across 204 languages. We systematically examine both seen and unseen languages across three model families of varying sizes in zero-shot and few-shot settings. Our findings show significant differences in scaling behavior between zero-shot and two-shot scenarios, with striking disparities in performance between seen and unseen languages. Model scale has little effect on zero-shot performance, which remains mostly flat. However, in two-shot settings, larger models show clear linear improvements in multilingual text classification. For translation tasks, however, only the instruction-tuned model showed clear benefits from scaling. Our analysis also suggests that overall resource levels, not just the proportions of pretraining languages, are better predictors of model performance, shedding light on what drives multilingual LLM effectiveness.
Abstract:The widespread use of social media highlights the need to understand its impact, particularly the role of online social support. This study uses a dataset focused on online social support, which includes binary and multiclass classifications of social support content on social media. The classification of social support is divided into three tasks. The first task focuses on distinguishing between supportive and non-supportive. The second task aims to identify whether the support is directed toward an individual or a group. The third task categorizes the specific type of social support, grouping it into categories such as Nation, LGBTQ, Black people, Women, Religion, and Other (if it does not fit into the previously mentioned categories). To address data imbalances in these tasks, we employed K-means clustering for balancing the dataset and compared the results with the original unbalanced data. Using advanced machine learning techniques, including transformers and zero-shot learning approaches with GPT3, GPT4, and GPT4-o, we predict social support levels in various contexts. The effectiveness of the dataset is evaluated using baseline models across different learning approaches, with transformer-based methods demonstrating superior performance. Additionally, we achieved a 0.4\% increase in the macro F1 score for the second task and a 0.7\% increase for the third task, compared to previous work utilizing traditional machine learning with psycholinguistic and unigram-based TF-IDF values.
Abstract:Multilingual language models (MLLMs) are crucial for handling text across various languages, yet they often show performance disparities due to differences in resource availability and linguistic characteristics. While the impact of pre-train data percentage and model size on performance is well-known, our study reveals additional critical factors that significantly influence MLLM effectiveness. Analyzing a wide range of features, including geographical, linguistic, and resource-related aspects, we focus on the SIB-200 dataset for classification and the Flores-200 dataset for machine translation, using regression models and SHAP values across 204 languages. Our findings identify token similarity and country similarity as pivotal factors, alongside pre-train data and model size, in enhancing model performance. Token similarity facilitates cross-lingual transfer, while country similarity highlights the importance of shared cultural and linguistic contexts. These insights offer valuable guidance for developing more equitable and effective multilingual language models, particularly for underrepresented languages.
Abstract:Fairness in multi-document summarization of user-generated content remains a critical challenge in natural language processing (NLP). Existing summarization methods often fail to ensure equitable representation across different social groups, leading to biased outputs. In this paper, we introduce two novel methods for fair extractive summarization: FairExtract, a clustering-based approach, and FairGPT, which leverages GPT-3.5-turbo with fairness constraints. We evaluate these methods using Divsumm summarization dataset of White-aligned, Hispanic, and African-American dialect tweets and compare them against relevant baselines. The results obtained using a comprehensive set of summarization quality metrics such as SUPERT, BLANC, SummaQA, BARTScore, and UniEval, as well as a fairness metric F, demonstrate that FairExtract and FairGPT achieve superior fairness while maintaining competitive summarization quality. Additionally, we introduce composite metrics (e.g., SUPERT+F, BLANC+F) that integrate quality and fairness into a single evaluation framework, offering a more nuanced understanding of the trade-offs between these objectives. This work highlights the importance of fairness in summarization and sets a benchmark for future research in fairness-aware NLP models.
Abstract:Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We comprehensively evaluate several long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.
Abstract:Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources. This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions in knowledge-consistent scenarios. We introduce a novel dataset, WikiAtomic, and systematically vary context sizes to analyze how LLMs prioritize and utilize the provided information and their parametric knowledge in knowledge-consistent scenarios. Additionally, we also study their tendency to hallucinate under varying context sizes. Our findings reveal consistent patterns across models, including a consistent reliance on both contextual (around 70%) and parametric (around 30%) knowledge, and a decrease in hallucinations with increasing context. These insights highlight the importance of more effective context organization and developing models that use input more deterministically for robust performance.
Abstract:Online conversations are particularly susceptible to derailment, which can manifest itself in the form of toxic communication patterns including disrespectful comments and abuse. Forecasting conversation derailment predicts signs of derailment in advance enabling proactive moderation of conversations. State-of-the-art approaches to conversation derailment forecasting sequentially encode conversations and use graph neural networks to model dialogue user dynamics. However, existing graph models are not able to capture complex conversational characteristics such as context propagation and emotional shifts. The use of common sense knowledge enables a model to capture such characteristics, thus improving performance. Following this approach, here we derive commonsense statements from a knowledge base of dialogue contextual information to enrich a graph neural network classification architecture. We fuse the multi-source information on utterance into capsules, which are used by a transformer-based forecaster to predict conversation derailment. Our model captures conversation dynamics and context propagation, outperforming the state-of-the-art models on the CGA and CMV benchmark datasets
Abstract:Text summarization models have typically focused on optimizing aspects of quality such as fluency, relevance, and coherence, particularly in the context of news articles. However, summarization models are increasingly being used to summarize diverse sources of text, such as social media data, that encompass a wide demographic user base. It is thus crucial to assess not only the quality of the generated summaries, but also the extent to which they can fairly represent the opinions of diverse social groups. Position bias, a long-known issue in news summarization, has received limited attention in the context of social multi-document summarization. We deeply investigate this phenomenon by analyzing the effect of group ordering in input documents when summarizing tweets from three distinct linguistic communities: African-American English, Hispanic-aligned Language, and White-aligned Language. Our empirical analysis shows that although the textual quality of the summaries remains consistent regardless of the input document order, in terms of fairness, the results vary significantly depending on how the dialect groups are presented in the input data. Our results suggest that position bias manifests differently in social multi-document summarization, severely impacting the fairness of summarization models.