Abstract:Recent large language models (LLMs) demonstrate impressive capabilities in handling long contexts, some exhibiting near-perfect recall on synthetic retrieval tasks. However, these evaluations have mainly focused on English text and involved a single target sentence within lengthy contexts. Our work investigates how LLM performance generalizes to multilingual settings with multiple hidden target sentences. We comprehensively evaluate several long-context LLMs on retrieval and reasoning tasks across five languages: English, Vietnamese, Indonesian, Swahili, and Somali. These languages share the Latin script but belong to distinct language families and resource levels. Our analysis reveals a significant performance gap between languages. The best-performing models such as Gemini-1.5 and GPT-4o, achieve around 96% accuracy in English to around 36% in Somali with a single target sentence. However, this accuracy drops to 40% in English and 0% in Somali when dealing with three target sentences. Our findings highlight the challenges long-context LLMs face when processing longer contexts, an increase in the number of target sentences, or languages of lower resource levels.
Abstract:This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages. We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset, a topic classification dataset encompassing 204 languages. Our analysis considers three scenarios: ALL languages, SEEN languages (present in the model's pretraining data), and UNSEEN languages (not present or documented in the model's pretraining data in any meaningful way). We examine the impact of factors such as pretraining data size, general resource availability, language family, and script type on model performance. Decision tree analysis reveals that pretraining data size is the most influential factor for SEEN languages. However, interestingly, script type and language family are crucial for UNSEEN languages, highlighting the importance of cross-lingual transfer learning. Notably, model size and architecture do not significantly alter the most important features identified. Our findings provide valuable insights into the strengths and limitations of current MLLMs and hope to guide the development of more effective and equitable multilingual NLP systems.
Abstract:Multilingual language models have gained significant attention in recent years, enabling the development of applications that cater to diverse linguistic contexts. In this paper, we present a comprehensive evaluation of three prominent multilingual language models: mBERT, XLM-R, and GPT-3. Using the self-supervised task of next token prediction, we assess their performance across a diverse set of languages, with a focus on understanding the impact of resource availability, word order, language family, and script type on model accuracy. Our findings reveal that resource availability plays a crucial role in model performance, with higher resource levels leading to improved accuracy. We also identify the complex relationship between resource availability, language families, and script types, highlighting the need for further investigation into language-specific characteristics and structural variations. Additionally, our statistical inference analysis identifies significant features contributing to model performance, providing insights for model selection and deployment. Our study contributes to a deeper understanding of multilingual language models and informs future research and development to enhance their performance and generalizability across languages and linguistic contexts.