Abstract:Speech is the fundamental means of communication between humans. The advent of AI and sophisticated speech technologies have led to the rapid proliferation of human-to-computer-based interactions, fueled primarily by Automatic Speech Recognition (ASR) systems. ASR systems normally take human speech in the form of audio and convert it into words, but for some users, it cannot decode the speech, and any output text is filled with errors that are incomprehensible to the human reader. These systems do not work equally for everyone and actually hinder the productivity of some users. In this paper, we present research that addresses ASR biases against gender, race, and the sick and disabled, while exploring studies that propose ASR debiasing techniques for mitigating these discriminations. We also discuss techniques for designing a more accessible and inclusive ASR technology. For each approach surveyed, we also provide a summary of the investigation and methods applied, the ASR systems and corpora used, and the research findings, and highlight their strengths and/or weaknesses. Finally, we propose future opportunities for Natural Language Processing researchers to explore in the next level creation of ASR technologies.
Abstract:With the growing rates of cyber-attacks and cyber espionage, the need for better and more powerful intrusion detection systems (IDS) is even more warranted nowadays. The basic task of an IDS is to act as the first line of defense, in detecting attacks on the internet. As intrusion tactics from intruders become more sophisticated and difficult to detect, researchers have started to apply novel Machine Learning (ML) techniques to effectively detect intruders and hence preserve internet users' information and overall trust in the entire internet network security. Over the last decade, there has been an explosion of research on intrusion detection techniques based on ML and Deep Learning (DL) architectures on various cyber security-based datasets such as the DARPA, KDDCUP'99, NSL-KDD, CAIDA, CTU-13, UNSW-NB15. In this research, we review contemporary literature and provide a comprehensive survey of different types of intrusion detection technique that applies Support Vector Machines (SVMs) algorithms as a classifier. We focus only on studies that have been evaluated on the two most widely used datasets in cybersecurity namely: the KDDCUP'99 and the NSL-KDD datasets. We provide a summary of each method, identifying the role of the SVMs classifier, and all other algorithms involved in the studies. Furthermore, we present a critical review of each method, in tabular form, highlighting the performance measures, strengths, and limitations of each of the methods surveyed.