Abstract:Over the last decade, similar to other application domains, social media content has been proven very effective in disaster informatics. However, due to the unstructured nature of the data, several challenges are associated with disaster analysis in social media content. To fully explore the potential of social media content in disaster informatics, access to relevant content and the correct geo-location information is very critical. In this paper, we propose a three-step solution to tackling these challenges. Firstly, the proposed solution aims to classify social media posts into relevant and irrelevant posts followed by the automatic extraction of location information from the posts' text through Named Entity Recognition (NER) analysis. Finally, to quickly analyze the topics covered in large volumes of social media posts, we perform topic modeling resulting in a list of top keywords, that highlight the issues discussed in the tweet. For the Relevant Classification of Twitter Posts (RCTP), we proposed a merit-based fusion framework combining the capabilities of four different models namely BERT, RoBERTa, Distil BERT, and ALBERT obtaining the highest F1-score of 0.933 on a benchmark dataset. For the Location Extraction from Twitter Text (LETT), we evaluated four models namely BERT, RoBERTa, Distil BERTA, and Electra in an NER framework obtaining the highest F1-score of 0.960. For topic modeling, we used the BERTopic library to discover the hidden topic patterns in the relevant tweets. The experimental results of all the components of the proposed end-to-end solution are very encouraging and hint at the potential of social media content and NLP in disaster management.
Abstract:This paper focuses on a very important societal challenge of water quality analysis. Being one of the key factors in the economic and social development of society, the provision of water and ensuring its quality has always remained one of the top priorities of public authorities. To ensure the quality of water, different methods for monitoring and assessing the water networks, such as offline and online surveys, are used. However, these surveys have several limitations, such as the limited number of participants and low frequency due to the labor involved in conducting such surveys. In this paper, we propose a Natural Language Processing (NLP) framework to automatically collect and analyze water-related posts from social media for data-driven decisions. The proposed framework is composed of two components, namely (i) text classification, and (ii) topic modeling. For text classification, we propose a merit-fusion-based framework incorporating several Large Language Models (LLMs) where different weight selection and optimization methods are employed to assign weights to the LLMs. In topic modeling, we employed the BERTopic library to discover the hidden topic patterns in the water-related tweets. We also analyzed relevant tweets originating from different regions and countries to explore global, regional, and country-specific issues and water-related concerns. We also collected and manually annotated a large-scale dataset, which is expected to facilitate future research on the topic.
Abstract:In recent years, the increasing use of Artificial Intelligence based text generation tools has posed new challenges in document provenance, authentication, and authorship detection. However, advancements in stylometry have provided opportunities for automatic authorship and author change detection in multi-authored documents using style analysis techniques. Style analysis can serve as a primary step toward document provenance and authentication through authorship detection. This paper investigates three key tasks of style analysis: (i) classification of single and multi-authored documents, (ii) single change detection, which involves identifying the point where the author switches, and (iii) multiple author-switching detection in multi-authored documents. We formulate all three tasks as classification problems and propose a merit-based fusion framework that integrates several state-of-the-art natural language processing (NLP) algorithms and weight optimization techniques. We also explore the potential of special characters, which are typically removed during pre-processing in NLP applications, on the performance of the proposed methods for these tasks by conducting extensive experiments on both cleaned and raw datasets. Experimental results demonstrate significant improvements over existing solutions for all three tasks on a benchmark dataset.
Abstract:Style analysis, which is relatively a less explored topic, enables several interesting applications. For instance, it allows authors to adjust their writing style to produce a more coherent document in collaboration. Similarly, style analysis can also be used for document provenance and authentication as a primary step. In this paper, we propose an ensemble-based text-processing framework for the classification of single and multi-authored documents, which is one of the key tasks in style analysis. The proposed framework incorporates several state-of-the-art text classification algorithms including classical Machine Learning (ML) algorithms, transformers, and deep learning algorithms both individually and in merit-based late fusion. For the merit-based late fusion, we employed several weight optimization and selection methods to assign merit-based weights to the individual text classification algorithms. We also analyze the impact of the characters on the task that are usually excluded in NLP applications during pre-processing by conducting experiments on both clean and un-clean data. The proposed framework is evaluated on a large-scale benchmark dataset, significantly improving performance over the existing solutions.