Abstract:Brain-inspired learning in physical hardware has enormous potential to learn fast at minimal energy expenditure. One of the characteristics of biological learning systems is their ability to learn in the presence of various noise sources. Inspired by this observation, we introduce a novel noise-based learning approach for physical systems implementing multi-layer neural networks. Simulation results show that our approach allows for effective learning whose performance approaches that of the conventional effective yet energy-costly backpropagation algorithm. Using a spintronics hardware implementation, we demonstrate experimentally that learning can be achieved in a small network composed of physical stochastic magnetic tunnel junctions. These results provide a path towards efficient learning in general physical systems which embraces rather than mitigates the noise inherent in physical devices.
Abstract:In the modern world, our cities and societies face several technological and societal challenges, such as rapid urbanization, global warming & climate change, the digital divide, and social inequalities, increasing the need for more sustainable cities and societies. Addressing these challenges requires a multifaceted approach involving all the stakeholders, sustainable planning, efficient resource management, innovative solutions, and modern technologies. Like other modern technologies, social media informatics also plays its part in developing more sustainable and resilient cities and societies. Despite its limitations, social media informatics has proven very effective in various sustainable cities and society applications. In this paper, we review and analyze the role of social media informatics in sustainable cities and society by providing a detailed overview of its applications, associated challenges, and potential solutions. This work is expected to provide a baseline for future research in the domain.
Abstract:Learning is a fundamental property of intelligent systems, observed across biological organisms and engineered systems. While modern intelligent systems typically rely on gradient descent for learning, the need for exact gradients and complex information flow makes its implementation in biological and neuromorphic systems challenging. This has motivated the exploration of alternative learning mechanisms that can operate locally and do not rely on exact gradients. In this work, we introduce a novel approach that leverages noise in the parameters of the system and global reinforcement signals. Using an Ornstein-Uhlenbeck process with adaptive dynamics, our method balances exploration and exploitation during learning, driven by deviations from error predictions, akin to reward prediction error. Operating in continuous time, Orstein-Uhlenbeck adaptation (OUA) is proposed as a general mechanism for learning dynamic, time-evolving environments. We validate our approach across diverse tasks, including supervised learning and reinforcement learning in feedforward and recurrent systems. Additionally, we demonstrate that it can perform meta-learning, adjusting hyper-parameters autonomously. Our results indicate that OUA provides a viable alternative to traditional gradient-based methods, with potential applications in neuromorphic computing. It also hints at a possible mechanism for noise-driven learning in the brain, where stochastic neurotransmitter release may guide synaptic adjustments.
Abstract:Herein the topics of (natural) gradient descent, data decorrelation, and approximate methods for backpropagation are brought into a dialogue. Natural gradient descent illuminates how gradient vectors, pointing at directions of steepest descent, can be improved by considering the local curvature of loss landscapes. We extend this perspective and show that to fully solve the problem illuminated by natural gradients in neural networks, one must recognise that correlations in the data at any linear transformation, including node responses at every layer of a neural network, cause a non-orthonormal relationship between the model's parameters. To solve this requires a solution to decorrelate inputs at each individual layer of a neural network. We describe a range of methods which have been proposed for decorrelation and whitening of node output, while providing a novel method specifically useful for distributed computing and computational neuroscience. Implementing decorrelation within multi-layer neural networks, we can show that not only is training via backpropagation sped up significantly but also existing approximations of backpropagation, which have failed catastrophically in the past, are made performant once more. This has the potential to provide a route forward for approximate gradient descent methods which have previously been discarded, training approaches for analogue and neuromorphic hardware, and potentially insights as to the efficacy and utility of decorrelation processes in the brain.
Abstract:A significant increase in the commercial use of deep neural network models increases the need for efficient AI. Node pruning is the art of removing computational units such as neurons, filters, attention heads, or even entire layers while keeping network performance at a maximum. This can significantly reduce the inference time of a deep network and thus enhance its efficiency. Few of the previous works have exploited the ability to recover performance by reorganizing network parameters while pruning. In this work, we propose to create a subspace from unit activations which enables node pruning while recovering maximum accuracy. We identify that for effective node pruning, a subspace can be created using a triangular transformation matrix, which we show to be equivalent to Gram-Schmidt orthogonalization, which automates this procedure. We further improve this method by reorganizing the network prior to subspace formation. Finally, we leverage the orthogonal subspaces to identify layer-wise pruning ratios appropriate to retain a significant amount of the layer-wise information. We show that this measure outperforms existing pruning methods on VGG networks. We further show that our method can be extended to other network architectures such as residual networks.
Abstract:The backpropagation algorithm remains the dominant and most successful method for training deep neural networks (DNNs). At the same time, training DNNs at scale comes at a significant computational cost and therefore a high carbon footprint. Converging evidence suggests that input decorrelation may speed up deep learning. However, to date, this has not yet translated into substantial improvements in training efficiency in large-scale DNNs. This is mainly caused by the challenge of enforcing fast and stable network-wide decorrelation. Here, we show for the first time that much more efficient training of very deep neural networks using decorrelated backpropagation is feasible. To achieve this goal we made use of a novel algorithm which induces network-wide input decorrelation using minimal computational overhead. By combining this algorithm with careful optimizations, we obtain a more than two-fold speed-up and higher test accuracy compared to backpropagation when training a 18-layer deep residual network. This demonstrates that decorrelation provides exciting prospects for efficient deep learning at scale.
Abstract:Over the last decade, similar to other application domains, social media content has been proven very effective in disaster informatics. However, due to the unstructured nature of the data, several challenges are associated with disaster analysis in social media content. To fully explore the potential of social media content in disaster informatics, access to relevant content and the correct geo-location information is very critical. In this paper, we propose a three-step solution to tackling these challenges. Firstly, the proposed solution aims to classify social media posts into relevant and irrelevant posts followed by the automatic extraction of location information from the posts' text through Named Entity Recognition (NER) analysis. Finally, to quickly analyze the topics covered in large volumes of social media posts, we perform topic modeling resulting in a list of top keywords, that highlight the issues discussed in the tweet. For the Relevant Classification of Twitter Posts (RCTP), we proposed a merit-based fusion framework combining the capabilities of four different models namely BERT, RoBERTa, Distil BERT, and ALBERT obtaining the highest F1-score of 0.933 on a benchmark dataset. For the Location Extraction from Twitter Text (LETT), we evaluated four models namely BERT, RoBERTa, Distil BERTA, and Electra in an NER framework obtaining the highest F1-score of 0.960. For topic modeling, we used the BERTopic library to discover the hidden topic patterns in the relevant tweets. The experimental results of all the components of the proposed end-to-end solution are very encouraging and hint at the potential of social media content and NLP in disaster management.
Abstract:This paper focuses on a very important societal challenge of water quality analysis. Being one of the key factors in the economic and social development of society, the provision of water and ensuring its quality has always remained one of the top priorities of public authorities. To ensure the quality of water, different methods for monitoring and assessing the water networks, such as offline and online surveys, are used. However, these surveys have several limitations, such as the limited number of participants and low frequency due to the labor involved in conducting such surveys. In this paper, we propose a Natural Language Processing (NLP) framework to automatically collect and analyze water-related posts from social media for data-driven decisions. The proposed framework is composed of two components, namely (i) text classification, and (ii) topic modeling. For text classification, we propose a merit-fusion-based framework incorporating several Large Language Models (LLMs) where different weight selection and optimization methods are employed to assign weights to the LLMs. In topic modeling, we employed the BERTopic library to discover the hidden topic patterns in the water-related tweets. We also analyzed relevant tweets originating from different regions and countries to explore global, regional, and country-specific issues and water-related concerns. We also collected and manually annotated a large-scale dataset, which is expected to facilitate future research on the topic.
Abstract:In recent years, the increasing use of Artificial Intelligence based text generation tools has posed new challenges in document provenance, authentication, and authorship detection. However, advancements in stylometry have provided opportunities for automatic authorship and author change detection in multi-authored documents using style analysis techniques. Style analysis can serve as a primary step toward document provenance and authentication through authorship detection. This paper investigates three key tasks of style analysis: (i) classification of single and multi-authored documents, (ii) single change detection, which involves identifying the point where the author switches, and (iii) multiple author-switching detection in multi-authored documents. We formulate all three tasks as classification problems and propose a merit-based fusion framework that integrates several state-of-the-art natural language processing (NLP) algorithms and weight optimization techniques. We also explore the potential of special characters, which are typically removed during pre-processing in NLP applications, on the performance of the proposed methods for these tasks by conducting extensive experiments on both cleaned and raw datasets. Experimental results demonstrate significant improvements over existing solutions for all three tasks on a benchmark dataset.
Abstract:Backpropagation (BP) is the dominant and most successful method for training parameters of deep neural network models. However, BP relies on two computationally distinct phases, does not provide a satisfactory explanation of biological learning, and can be challenging to apply for training of networks with discontinuities or noisy node dynamics. By comparison, node perturbation (NP) proposes learning by the injection of noise into the network activations, and subsequent measurement of the induced loss change. NP relies on two forward (inference) passes, does not make use of network derivatives, and has been proposed as a model for learning in biological systems. However, standard NP is highly data inefficient and unstable due to its unguided, noise-based, activity search. In this work, we investigate different formulations of NP and relate it to the concept of directional derivatives as well as combining it with a decorrelating mechanism for layer-wise inputs. We find that a closer alignment with directional derivatives, and induction of decorrelation of inputs at every layer significantly enhances performance of NP learning making it competitive with BP.